[1] A. Ali, S. Sekar, S. Balachandran, S. Elumalai, A.M. Alanazi, T.S. Hassan, and Y. Shang, Graphical edge-weight-function indices of trees, AIMS Math. 9 (2024), no. 11, 32552–32570.
https://doi.org/10.3934/math.20241559
[2] S. Alikhani and N. Ghanbari, Sombor index of polymers, MATCH Commun. Math. Comput. Chem 86 (2021), 715–728.
[5] K.C. Das, A. Ghalavand, and A.R. Ashrafi, On a conjecture about the Sombor index of graphs, Symmetry 13 (2021), no. 10, Article ID: 1830.
https://doi.org/10.3390/sym13101830
[8] N. Dehgardi and M. Azari, Trees, unicyclic graphs and their geometric Sombor index: an extremal approach, J. Comput. Appl. Math. 43 (2024), no. 5, Article ID: 271.
https://doi.org/10.1007/s40314-024-02793-5
[12] I. Gutman, Geometric approach to degree-based topological indices: Sombor indices, MATCH Commun. Math. Comput. Chem. 86 (2021), no. 1, 11–16.
[14] I. Gutman, B. Furtula, and M.S. Oz, Geometric approach to vertex-degree-based topological indices–Elliptic Sombor index, theory and application, Int. J. Quantum Chem. 124 (2024), no. 2, e27346.
https://doi.org/10.1002/qua.27346
[24] R. Todeschini and V. Consonni, Handbook of Molecular Descriptors, John Wiley & Sons, 2009.