[7] M. Dorigo, M. Birattari, and T. Stutzle, Ant colony optimization: Artificial ants as a computational intelligence technique, IEEE Comput. Intell. Mag. 1 (2006), no. 4, Article ID: 28.
[8] F. El Asri, C. Tajani, and H. Fakhouri, A combined ant colony optimization with levy flight mechanism for the probabilistic traveling salesman problem with deadlines, Math. Model. Comput. 11 (2024), no. 1, 290–299.
https://doi.org/10.23939/mmc2024.01.290
[15] F. Harrary and R.A. Melter, On the metric dimension of a graph, Ars Combin. 2 (1976), 191–195.
[17] H. Hendy, M.I. Irawan, I. Mukhlash, and S. Setumin, A bibliometric analysis of metaheuristic research and its applications, Regist.: J. Ilm. Teknol. Sist. Inf. 9 (2023), no. 1, 1–17.
http://doi.org/10.26594/register.v9i1.2675
[18] C. Hernando, M. Mora, I.M. Pelayo, C. Seara, J. Cáceres, and M.L. Puertas, On the metric dimension of some families of graphs, Electron. Notes Discrete Math. 22 (2005), 129–133.
https://doi.org/10.1016/j.endm.2005.06.023
[21] S. Imran, M.K. Siddiqui, M. Imran, M. Hussain, H.M. Bilal, I.Z. Cheema, A. Tabraiz, and Z. Saleem, Computing the metric dimension of gear graphs, Symmetry 10 (2018), no. 6, Article ID: 209.
https://doi.org/10.3390/sym10060209
[23] J. Kratica, V. Kovačević-Vujčić, and M. Čangalović, Computing the metric dimension of graphs by genetic algorithms, Comput. Optim. Appl. 44 (2009), no. 2, 343–361.
https://doi.org/10.1007/s10589-007-9154-5
[26] N. Mladenović, J. Kratica, V. Kovačević-Vujčić, and M. Čangalović, Variable neighborhood search for metric dimension and minimal doubly resolving set problems, European J. Oper. Res. 220 (2012), no. 2, 328–337.
https://doi.org/10.1016/j.ejor.2012.02.019
[27] B. Mohamed and M. Amin, A hybrid optimization algorithms for solving metric dimension problem, International Journal on Applications of Graph Theory in Wireless Ad hoc Networks and Sensor Networks (GRAPH-HOC) 15 (2023),
no. 1/2, 1–10.
https://doi.org/10.5121/jgraphoc.2023.15201
[28] B. Mohamed, L. Mohaisen, and M. Amin, Binary equilibrium optimization algorithm for computing connected domination metric dimension problem, Sci. Program. 2022 (2022), no. 1, Article ID: 6076369.
https://doi.org/10.1155/2022/6076369
[29] D.T. Murdiansyah and Adiwijaya, Computing the metric dimension of hypercube graphs by particle swarm optimization algorithms, Recent Advances on Soft Computing and Data Mining (Cham) (T. Herawan, R. Ghazali, N.M. Nawi, and M.M. Deris, eds.), Springer International Publishing, 2017, pp. 171–178.
[30] R. Pal, M. Saraswat, S. Kumar, A. Nayyar, and P.K. Rajput, Energy efficient multi-criterion binary grey wolf optimizer based clustering for heterogeneous wireless sensor networks, Soft Comput. 28 (2024), no. 4, 3251–3265.
https://doi.org/10.1007/s00500-023-09316-0
[31] A. Raghavendra, B. Sooryanarayana, and C. Hegde, Bi-metric dimension of graphs, British J. Math. & Comput. Sci. 4 (2014), no. 18, Article ID: 2699.
[32] R.R. Rajammal, S. Mirjalili, G. Ekambaram, and N. Palanisamy, Binary grey wolf optimizer with mutation and adaptive k-nearest neighbour for feature selection in parkinson’s disease diagnosis, Knowledge-Based Systems 246 (2022), Article ID: 108701.
https://doi.org/10.1016/j.knosys.2022.108701
[33] S. Rehman, M. Imran, and I. Javaid, On the metric dimension of arithmetic graph of a composite number, Symmetry 12 (2020), no. 4, Article ID: 607.
https://doi.org/10.3390/sym12040607
[35] Z. Shao, S.M. Sheikholeslami, Pu Wu, and J.B. Liu, The metric dimension of some generalized petersen graphs, Discrete Dyn. Nat. Soc. 2018 (2018), no. 1, Article ID: 4531958.
https://doi.org/10.1155/2018/4531958
[36] P. Slater, Leaves of trees, Proc. 6th Southeastern Conf. on Combinatorics, Graph Theory, and Computing, Congr. Numer., vol. 14, Elsevier, 1975, pp. 549–559.
[37] B. Sooryanarayana, S Kunikullaya, and N.N. Swamy, Metric dimension of generalized wheels, Arab J. Math. Sci. 25 (2019), no. 2, 131–144.