[4] J. Amjadi and H. Sadeghi, Triple Roman domination subdivision number in graphs, Comput. Sci. J. Moldova 88 (2022), no. 1, 109–130.
[7] M. Dettlaff, J. Raczek, and J. Topp, Domination subdivision and domination multisubdivision numbers of graphs, Discuss. Math. Graph Theory 39 (2019), no. 4, 829–839.
https://doi.org/10.7151/dmgt.2103
[9] M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, W. H. Freeman and Co., San Francisco, CA, 1979.
[11] T. Haynes, S. Hedetniemi, and S. Hedetniemi, Domination and independence subdivision numbers of graphs, Discuss. Math. Graph Theory 20 (2000), no. 2, 271–280.
https://doi.org/10.7151/dmgt.1126
[12] T.W. Haynes, S.T. Hedetniemi, and M.A. Henning, Domination in Graphs: Core Concepts, 1st ed., Springer Monographs in Mathematics, Springer Nature Switzerland AG, Cham, Switzerland, 2023.
[13] T.W. Haynes, S.T. Hedetniemi, and L.C. van der Merwe, Total domination subdivision numbers, J. Combin. Math. Combin. Comput. 44 (2003), 115–128.
[14] J. Huang and J.M. Xu, Domination and total domination contraction numbers of graphs, Ars Combin. 94 (2010), 431–443.
[15] J. Kok and C. M. Mynhardt, Reinforcement in graphs, Congr. Numer. 79 (1990), 225–231.
[16] S. Velammal, Studies in graph theory: Covering, independence, domination and related topics, Ph.D. thesis, Manonmaniam Sundaranar University, Tirunelveli, India, 1997.