[1] S. Al-Homidan and Q.H. Ansari, Generalized minty vector variational-like inequalities and vector optimization problems, J. Optim. Theory Appl. 144 (2010), no. 1, 1–11.
https://doi.org/10.1007/s10957-009-9591-7
[2] F.H. Clarke, Optimization and Nonsmooth Analysis, Society for Industrial and Applied Mathematics (SIAM, 3600 Market Street, Floor 6, Philadelphia, PA 19104), 1990.
[4] A. Fischer, A.B. Zemkoho, and S. Zhou, Semismooth newton-type method for bilevel optimization: global convergence and extensive numerical experiments, Optim. Methods Softw. 37 (2022), no. 5, 1770–1804.
https://doi.org/10.1080/10556788.2021.1977810
[5] F. Giannessi, Theorems of the alternative: quadratic programs and complementarity problems, pp. 151–186, John Wiley & Sons Ltd, New York, 1980.
[6] P. Gupta and S.K. Mishra, On minty variational principle for nonsmooth vector optimization problems with generalized approximate convexity, Optimization 67 (2018), no. 8, 1157–1167.
https://doi.org/10.1080/02331934.2018.1466884
[8] M. Jennane, L. El Fadil, and E.M. Kalmoun, On local quasi efficient solutions for nonsmooth vector optimization problems, Croat. Oper. Res. Rev. 11 (2020), no. 1, 1–10.
https://doi.org/10.17535/crorr.2020.0001
[9] M. Jennane, E.M. Kalmoun, and L. El Fadil, Optimality conditions for nonsmooth multiobjective bilevel optimization using tangential subdifferentials, RAIRO Oper. Res. 55 (2021), no. 5, 3041–3048.
https://doi.org/10.1051/ro/2021139
[10] B. Kohli, Variational inequalities and optimistic bilevel programming problem via convexifactors, pp. 243–255, Springer New York, New York, NY, 2011.
[13] J.E. Martínez-Legaz, Optimality conditions for pseudoconvex minimization over convex sets defined by tangentially convex constraints, Optim. Lett. 9 (2015), no. 5, 1017–1023.
https://doi.org/10.1007/s11590-014-0822-y
[15] P. Michel and J.P. Penot, A generalized derivative for calm and stable functions, Diff. Integ. Eq. 5 (1992), no. 2, 433–454.
[16] S.K. Mishra and V. Laha, On minty variational principle for nonsmooth vector optimization problems with approximate convexity, Optim. Lett. 10 (2016), no. 3, 577–589.
https://doi.org/10.1007/s11590-015-0883-6
[17] J.V. Outrata, On the numerical solution of a class of Stackelberg problems, Zeitschrift für Operations Research 34 (1990), no. 4, 255–277.
https://doi.org/10.1007/BF01416737
[18] B.N. Pshenichnyi, Necessary Conditions for an Extremum, CRC Press, 2020.
[19] G. Stampacchia, Formes bilineaires coercitives sur les ensembles convexes, Comptes Rendus Hebdomadaires Des Seances De L Academie Des Sciences 258 (1964), no. 18, 4413.
[20] S.K. Suneja and B. Kohli, Optimality and duality results for bilevel programming problem using convexifactors, J. Optim. Theory Appl. 150 (2011), no. 1, 1–19.
https://doi.org/10.1007/s10957-011-9819-1
[22] A. Yezza, First-order necessary optimality conditions for general bilevel programming problems, J. Optim. Theory Appl. 89 (1996), no. 1, 189–219.
https://doi.org/10.1007/BF02192648
[23] A.B. Zemkoho and S. Zhou, Theoretical and numerical comparison of the Karush–Kuhn–Tucker and value function reformulations in bilevel optimization, Comput. Optim. Appl. 78 (2021), no. 2, 625–674.
https://doi.org/10.1007/s10589-020-00250-7