[1] M. Andelic, S. Khan, and S. Pirzada, On graphs with a few distinct reciprocal distance Laplacian eigenvalues, AIMS Math. 8 (2023), no. 12, 29008–29016.
https://doi.org/10.3934/math.20231485
[5] G. Chartrand and P. Zhang, Introductory Graph Theory, Tata McGraw-Hill edition, New Delhi, 2006.
[6] Z. Cui and B. Liu, On Harary matrix, Harary index and Harary energy, MATCH Commun. Math. Comput. Chem. 68 (2012), no. 3, 815–823.
[7] C. Cvetković, R. Peter, and S. Slobodan, An Introduction to the Theory of Graph Spectra, Cambridge University Press, 2009.
[8] H.A. Ganie, B.A. Rather, and M. Aouchiche, Reciprocal distance Laplacian spectral properties double stars and their complements, Carpathian Math. Publ. 15 (2023), no. 2, 576–593.
https://doi.org/10.15330/cmp.15.2.576-593
[9] L. Huiqiu, S. Jinlong, X. Jie, and Z. Yuke, A survey on distance spectra of graphs, Adv. Math. 50 (2021), no. 1, 29–76.
[10] S. Khan, S. Pirzada, and Y. Shang, On the sum and spread of reciprocal distance Laplacian eigenvalues of graphs in terms of harary index, Symmetry 14 (2022), no. 9, 1937.
https://doi.org/10.3390/sym14091937
[11] A. Lupa¸s, Inequalities for the roots of a class of polynomials, Publ. Elektroteh. Fak., Univ. Beogradu, Ser. (1977), no. 577/598, 79–85.
[12] L. Medina and M. Trigo, Upper bounds and lower bounds for the spectral radius of reciprocal distance, reciprocal distance Laplacian and reciprocal distance signless laplacian matrices, Linear Algebra Appl. 609 (2021), 386–412.
https://doi.org/10.1016/j.laa.2020.09.024
[13] L. Medina and M. Trigo, Bounds on the reciprocal distance energy and reciprocal distance Laplacian energies of a graph, Linear Multilinear Algebra 70 (2022), no. 16, 3097–3118.
https://doi.org/10.1080/03081087.2020.1825607
[14] S. Pirzada and S. Khan, On the distribution of eigenvalues of the reciprocal distance Laplacian matrix of graphs, Filomat 37 (2023), no. 23, 7973–7980.
[17] B. Zhou and N. Trinajstić, Maximum eigenvalues of the reciprocal distance matrix and the reverse Wiener matrix, Int. J. Quantum Chem. 108 (2008), no. 5, 858–864.
https://doi.org/10.1002/qua.21558