[2] K.S. Bagga, L.W. Beineke, M.J. Lipman, and R.E. Pippert, On the edge-integrity of graphs, Congr. Numer. 60 (1987), 141–144.
[3] G. Balaraman, S.S. Kumar, and R. Sundareswaran, Geodetic domination integrity in graphs, TWMS J. App. and Eng. Math. 11 (2021), 258–267.
[4] C.A. Barefoot, R. Entringer, and H.C. Swart, Vulnerability in graphs-a comparative survey, J. Combin. Math. Combin. Comput. 1 (1987), 13–22.
[6] F. Buckley, F. Harary, and L.V. Quintas, Extremal results on the geodetic number of a graph, Scientia A 2 (1988), 17–26.
[7] G. Chartrand, F. Harary, and P. Zhang, Geodetic sets in graphs, Discuss. Math. Graph Theory 20 (2000), no. 1, 129–138.
[11] L.H. Clark, R.C. Entringer, and M.R. Fellows, Computational complexity of integrity, J. Combin. Math. Combin. Comput. 2 (1987), 179–191.
[13] M.B. Cozzens, D. Moazzami, and S. Stueckle, The tenacity of the harary graphs, J. Combin. Math. Combin. Comput. 16 (1994), 33–56.
[14] M.B. Cozzens, D. Moazzami, and S. Stueckle, The tenacity of a graph.,graph theory, Combinatorics and Algorithms
(Y. Alavi and A. Schwenk, eds.), Wiley, Newyork, 1995, pp. 1111–1112.
[15] B. Ganesan, S. Raman, S. Marayanagaraj, and S. Broumi, Geodetic domination integrity in fuzzy graphs, J. Intell. Fuzzy Syst. 45 (2023), no. 2, 2209–2222.
https://doi.org/10.3233/JIFS–223249
[16] B. Ganesan, S. Raman, and M. Pal, Strong domination integrity in graphs and fuzzy graphs, J. Intell. Fuzzy Syst. 43 (2022), no. 3, 2619–2632.
https://doi.org/10.3233/JIFS-213189
[18] G. Harisaran, G. Shiva, R. Sundareswaran, and M. Shanmugapriya, Connected domination integrity in graphs, Indian Journal of Natural Sciences 12 (2021), no. 65, 30271–30276.
[19] J.H. Hattingh and M.A. Henning, On strong domination in graphs, J. Combin. Math. Combin. Comput. 26 (1998), 73–92.
[20] J.H. Hattingh and R.C. Laskar, On weak domination in graphs, Ars Combin. 49 (1998).
[22] A. Kirlangic, On the weak-integrity of trees, Turkish J. Math. 27 (2003), no. 3, 375–388.
[23] F. Li and X. Li, Computing the rupture degrees of graphs, 7th International Symposium on Parallel Architectures, Algorithms and Networks, 2004. Proceedings., IEEE, 2004, pp. 368–373
https://doi.org/10.1109/ISPAN.2004.1300507
[25] R.E. Mariano and S.R. Canoy Jr, Edge geodetic covers in graphs, Int. Math. Forum. 4 (2009), no. 46, 2301–2310.
[26] O. Ore, Theory of graphs, American Mathematical Society Colloquium Publications 38 (1962), 206–212.
[29] E. Sampathkumar and H.B. Walikar, The connected domination number of a graph, J. Math. Phy. Sci. 13 (1979), no. 6, 607–613.
[31] A. Somasundaram, Domination in fuzzy graphs–II, J. Fuzzy Math. 13 (2005), no. 2, 281–288.
[33] R. Sundareswaran and V. Swaminathan, Domination integrity in graphs, Proceedings of International Conference on Mathematical and Experimental Physics 3 (2009), no. 8, 46–57.
[34] R. Sundareswaran and V. Swaminathan, Domination integrity of middle graphs, algebra, graph theory and their
applications, Graph Theory and Their Applications (T. Chelvam, S. Somasundaram, and R. Kala, eds.), Narosa Publishing House, New Delhi, 2010, pp. 88–92.
[36] Y. Talebiy and H. Rashmanlouz, Application of dominating sets in vague graphs, Appl. Math. E-Notes 17 (2017), 251–267.