[2] M.M. AlHoli, O.A. AbuGhneim, and H.A. Ezeh, Metric dimension of some path related graphs, Global J. Pure Appl. Math. 13 (2017), no. 2, 149–157.
[3] M. Ali, M.T. Rahim, and G. Ali, On path related graphs with constant metric dimension, Util. Math. 88 (2012), 203–209.
[4] R.F. Bailey and P.J. Cameron, Base size, metric dimension and other invariants of groups and graphs, Bull. Lond. Math. Soc. 43 (2011), no. 2, 209–242.
https://doi.org/10.1112/blms/bdq096
[5] R.F. Bailey and I. González Yero, Error-correcting codes from k-resolving sets, Discuss. Math. Graph Theory 39 (2019), no. 2, 341–355.
https://doi.org/10.7151/dmgt.2087
[9] E. Galby, L. Khazaliya, F. Mc Inerney, R. Sharma, and P. Tale, Metric dimension parameterized by feedback vertex set and other structural parameters, SIAM J. Discrete Math. 37 (2023), no. 4, 2241–2264.
https://doi.org/10.1137/22M1510911
[10] M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-completeness, wh freeman New York, 2002.
[12] F. Harary and R.A. Melter, On the metric dimension of a graph, Ars. Combin. 2 (1976), 191–195.
[13] I. Javaid, M.T. Rahim, and K. Ali, Families of regular graphs with constant metric dimension, Util. Math. 75 (2008), no. 1, 21–33.
[15] M. Knor, R. Škrekovski, and T. Vetrík, Metric dimension of circulant graphs with 5 consecutive generators, Math. 12 (2024), no. 9, Article ID: 1384.
https://doi.org/10.3390/math12091384
[16] D. Kuziak and I.G. Yero, Metric dimension related parameters in graphs: A survey on combinatorial, computational and applied results, arXiv preprint arXiv:2107.04877 (2021).
[17] S. Mashkaria, G. ´Odor, and P. Thiran, On the robustness of the metric dimension of grid graphs to adding a single edge, Discrete Appl. Math. 316 (2022), 1–27.
https://doi.org/10.1016/j.dam.2022.02.014
[20] L. Saha, M. Basak, K. Tiwary, K.C. Das, and Y. Shang, On the characterization of a minimal resolving set for power of paths, Math. 10 (2022), no. 14, Article ID: 2445.
https://doi.org/10.3390/math10142445
[21] P.J. Slater, Leaves of trees, Congr. Numer. 14 (1975), 549–559.
[22] R.C. Tillquist, R.M. Frongillo, and M.E. Lladser, Getting the lay of the land in discrete space: A survey of metric dimension and its applications, SIAM Rev. 65 (2023), no. 4, 919–962.
https://doi.org/10.1137/21M1409512
[25] S. Zejnilović, J. Gomes, and B. Sinopoli, Network observability and localization of the source of diffusion based on a subset of nodes, 2013 51st Annual Allerton Conference on Communication, Control, and Computing (Allerton), IEEE, 2013, pp. 847–852.