[1] A.W. Bustan and A.N.M. Salman, The rainbow vertex-connection number of star fan graphs, CAUCHY: Jurnal Matematika Murni dan Aplikasi 5 (2018), no. 3, 112–116.
https://doi.org/10.18860/ca.v5i3.5516
[4] A.W. Bustan, A.N.M. Salman, P.E. Putri, and Z.Y. Awanis, On the locating rainbow connection number of trees and regular bipartite graphs, Emerg. Sci. J. 7 (2023), no. 4, 1260–1273.
https://doi.org/10.28991/ESJ-2023-07-04-016
[5] G. Chartrand, D. Erwin, M.A. Henning, P. J. Slater, and P. Zhang, The locating-chromatic number of a graph, Bull. Inst. Combin. Appl 36 (2002), 89 –101.
[7] A.B. Ericksen, A matter of security, Graduating Engineer & Computer Careers 24 (2007), 28.
[9] M. Krivelevich and R. Yuster, The rainbow connection of a graph is (at most) reciprocal to its minimum degree, J. Graph Theory 63 (2010), no. 3, 185–191.
https://doi.org/10.1002/jgt.20418
[10] I.S. Kumala and A.N.M. Salman, The rainbow connection number of a flower $(C_m, K_n)$ graph and a flower $(C_3, F_n)$ graph, Procedia Comput. Sci. 74 (2015), 168–172.
https://doi.org/10.1016/j.procs.2015.12.094
[14] B.H. Susanti, A.N.M. Salman, and R. Simanjuntak, The rainbow 2-connectivity of cartesian pro-ducts of 2-connected graphs and paths, Electron. J. Graph Theory Appl. (EJGTA) 8 (2020), no. 1, 145–156.
https://dx.doi.org/10.5614/ejgta.2020.8.1.11
[15] R.F. Umbara, A.N.M. Salman, and P.E. Putri, On the inverse graph of a finite group and its rainbow connection number, Electron. J. Graph Theory Appl. 11 (2023), no. 1, 135–147.
https://doi.org/10.5614/ejgta.2023.11.1.11