[1] A. Ali, A.A. Bhatti, and Z. Raza, Further inequalities between vertex-degree-based topological indices, Int. J. Appl. Comput. Math. 3 (2017), no. 3, 1921–1930.
https://doi.org/10.1007/s40819-016-0213-4
[2] M. Aouchiche, I. El Hallaoui, and P. Hansen, Geometric-arithmetic index and minimum degree of connected graphs, MATCH Commun. Math. Comput. Chem. 83 (2020), no. 1, 179–188.
[3] M. Aouchiche and V. Ganesan, Adjusting geometric-arithmetic index to estimate boiling point, MATCH Commun. Math. Comput. Chem. 84 (2020), no. 2, 483–497.
[4] M. Aouchiche and P. Hansen, The normalized revised Szeged index, MATCH Commun. Math. Comput. Chem. 67 (2012), no. 2, 369–381.
[5] M. Aouchiche and P. Hansen, Comparing the geometric-arithmetic index and the spectral radius of graphs, MATCH Commun. Math. Comput. Chem. 84 (2020), no. 2, 473–482.
[6] A.E. Brouwer and W.H. Haemers, Spectra of Graphs, Springer Science & Business Media, 2010.
[8] K.C. Das, I. Gutman, and B. Furtula, Survey on geometric-arithmetic indices of graphs, MATCH Commun. Math. Comput. Chem. 65 (2011), no. 3, 595–644.
[9] T. Divnić, M. Milivojević, and L. Pavlović, Extremal graphs for the geometric–arithmetic index with given minimum degree, Discrete Appl. Math. 162 (2014), 386–390.
https://doi.org/10.1016/j.dam.2013.08.001
[10] I. Gutman, The energy of a graph, Ber. Math.–Statist. Sekt. Forsch–ungsz. 103 (1978), 1–22.
[11] I. Gutman, A formula for the Wiener number of trees and its extension to graphs containing cycles, Graph Theory Notes N.Y. 27 (1994), no. 9, 9–15.
[12] I. Gutman and B. Furtula, Geometric-arithmetic indices, Novel Molecular Structure Descriptors—Theory and Applications (I. Gutman and B. Furtula, eds.), Univ. Kragujevac, Kragujevac, 2010, pp. 137–172.
[14] I. Gutman and B. Furula, Recent Results in the Theory of Randić Index, Univ. Kragujevac, Kragujevac, 2008.
[15] I. Gutman and B. Furula, Novel Molecular Structure Descriptors - Theory and Applications I, Univ. Kragujevac, Kragujevac, 2010.
[16] I. Gutman and B. Furula, Novel Molecular Structure Descriptors - Theory and Applications II, Univ. Kragujevac, Kragujevac, 2010.
[18] S.M. Hosamani, B.B. Kulkarni, R.G. Boli, and V.M. Gadag, QSPR analysis of certain graph theocratical matrices and their corresponding energy, Appl. Math. Nonlinear Sci. 2 (2017), no. 1, 131–150.
https://doi.org/10.21042/AMNS.2017.1.00011
[19] H. Hosoya, Topological index. a newly proposed quantity characterizing the topological nature of structural isomers of saturated hydrocarbons, Bull. Chem. Soc. Jpn. 44 (1971), no. 9, 2332–2339.
[20] L.B. Keir and L.H. Hall, Molecular Connectivity in Structural-Activity Analysis, Research study, Letchworth, England, 1986.
[21] L.B. Kier and L.H. Hall, Molecular Connectivity in Chemistry and Drug Research, 1976.
[22] X. Li, I. Gutman, and M. Randić, Mathematical Aspects of Randić-type Molecular Structure Descriptors, University, Faculty of Science, 2006.
[23] X. Li and Y. Shi, A survey on the Randić index, MATCH Commun. Math. Comput. Chem. 59 (2008), no. 1, 127–156.
[24] X. Li, Y. Shi, and I. Gutman, Graph Energy, Springer Science & Business Media, 2012.
[26] S. Pirzada, B.A. Rather, and M. Aouchiche, On eigenvalues and energy of geometric–arithmetic matrix of graphs, Medit. J. Math. 19 (2022), no. 3, Article number: 115.
https://doi.org/10.1007/s00009-022-02035-0
[28] M. Randić, Topological indices, Encyclopedia of Computational Chemistry (P.V.R. Schleye, ed.), Wiley, London, 1998, pp. 3018–3032.
[29] M. Randić, On generalization of Wiener index for cyclic structures, Acta Chim. Slov. 49 (2002), no. 3, 483–496.
[30] B.A. Rather, M. Aouchiche, M. Imran, and S. Pirzada, On arithmetic–geometric eigenvalues of graphs, Main Group Metal Chem. 45 (2022), no. 1, 111–123.
https://doi.org/10.1515/mgmc-2022-0013
[32] J.M. Rodríguez and J.M. Sigarreta, Spectral study of the geometric-arithmetic index, MATCH Commun. Math. Comput. Chem. 74 (2015), no. 1, 121–135.
[34] G. Rücker and C. Rücker, On topological indices, boiling points, and cycloalkanes, J. Chem. Inf. Comput. Sci. 39 (1999), no. 5, 788–802.
https://doi.org/10.1021/ci9900175
[36] M. Sohrabi-Haghighat and M. Rostami, Using linear programming to find the extremal graphs with minimum degree 1 with respect to geometric-arithmetic index, Appl. math. Eng. Manag. Tec. 3 (2015), no. 1, 534–539.
[37] R. Todeschini and V. Consonni, Molecular Descriptors for Chemoinformatics, Wiley-VCH, Weinheim, 2009.
[38] S. Vujošević, G. Popivoda,
Ž.K. Vukićević, B. Furtula, and R. Škrekovski, Arithmetic–geometric index and its relations with geometric–arithmetic index, Appl. Math. Comp. 391 (2021), 125706.
https://doi.org/10.1016/j.amc.2020.125706
[39] D. Vukičević and B. Furtula, Topological index based on the ratios of geometrical and arithmetical means of end-vertex degrees of edges, J. Math. Chem. 46 (2009), no. 4, 1369–1376.
https://doi.org/10.1007/s10910-009-9520-x
[42] X. Zhao, Y. Shao, and Y. Gao, The maximal geometric-arithmetic energy of trees, MATCH Commun. Math. Comput. Chem. 84 (2020), no. 2, 363–367.