[2] S. Alikhani and N. Ghanbari, Sombor index of polymers, MATCH Commun. Math. Comput. Chem. 86 (2021), 715–728.
[3] S. Amin, A.U. Rehman Virk, M.A. Rehman, and N. Ali Shah, Analysis of dendrimer generation by Sombor indices, J. Chem. 2021 (2021), no. 1, 9930645.
https://doi.org/10.1155/2021/9930645
[4] H. Chen, W. Li, and J. Wang, Extremal values on the sombor index of trees, MATCH Commun. Math. Comput. Chem. 87 (2022), no. 1, 23–49.
[8] X. Fang, L. You, and H. Liu, The expected values of Sombor indices in random hexagonal chains, phenylene chains and Sombor indices of some chemical graphs, Int. J. Quantum Chem. 121 (2021), no. 17, e26740.
https://doi.org/10.1002/qua.26740
[9] A. Farooq, M. Habib, A. Mahboob, W. Nazeer, and S.M. Kang, Zagreb polynomials and redefined Zagreb indices of dendrimers and polyomino chains, Open Chem. 17 (2019), no. 1, 1374–1381.
https://doi.org/10.1515/chem-2019-0144
[11] A. Gut, Probability: a Graduate Course, Springer, 2006.
[12] I. Gutman, Geometric approach to degree-based topological indices: Sombor indices, MATCH Commun. Math. Comput. Chem. 86 (2021), 11–16.
[13] J.C. Hernández, J.M. Rodríguez, O. Rosario, and J.M. Sigarreta, Extremal problems on the general Sombor index of a graph, AIMS Math. 7 (2022), no. 5, 8330–8343.
https://doi.org/10.3934/math.2022464
[17] V.R. Kulli, Graph indices, Handbook of Research on Advanced Applications of Graph Theory in Modern Society (M. Pal, S. Samanta, and A. Pal, eds.), IGI Global, Oxford, UK, 2020, pp. 66–91.
[18] Y.C. Kwun, A. Farooq, W. Nazeer, Z. Zahid, S. Noreen, and S.M. Kang, Computations of the -polynomials and degree-based topological indices for dendrimers and polyomino chains, Int. J. Anal. Chem. 2018 (2018), 1709073.
https://doi.org/10.1155/2018/1709073
[19] H. Liu, H. Chen, Q. Xiao, X. Fang, and Z. Tang, More on Sombor indices of chemical graphs and their applications to the boiling point of benzenoid hydrocarbons, Int. J. Quantum Chem. 121 (2021), no. 17, e26689.
https://doi.org/10.1002/qua.26689
[20] H. Liu, L. You, Z. Tang, and J.B. Liu, On the reduced Sombor index and its applications, MATCH Commun. Math. Comput. Chem. 86 (2021), no. 3, 729–753.
[21] D. Mühlbacher, M. Scharber, M. Morana, C. Brabec, Z. Zhu, D. Waller, and R. Gaudiana, High photovoltaic performance of a low-bandgap polymer, Adv. Mater. 18 (2006), no. 21, 2884–2889.
https://doi.org/10.1002/adma.200600160
[22] K. Müllen, J.R. Reynolds, and T. Masuda, Conjugated Polymers: a Practical Guide to Synthesis, Royal Society of Chemistry, 2013.
[23] A. Pegu, B. Deka, I.J. Gogoi, and A. Bharali, Two generalized topological indices of some graph structures, J. Math. Comput. Sci. 11 (2021), no. 5, 5549–5564.
https://doi.org/10.28919/jmcs/6040
[25] A. Rauf, M. Naeem, and S.U. Bukhari, Quantitative structure–property relationship of ev-degree and ve-degree based topological indices: physico-chemical properties of benzene derivatives, Int. J. Quantum Chem. 122 (2022), no. 5, e26851.
https://doi.org/10.1002/qua.26851
[30] T.A. Severini, Elements of Distribution Theory, Cambridge University Press, 2005.
[32] Z. Shao, A. Jahanbani, and S.M. Sheikholeslami, Multiplicative topological indices of molecular structure in anticancer drugs, Polycycl. Aromat. Compd. 42 (2022), no. 2, 475–488.
https://doi.org/10.1080/10406638.2020.1743329
[33] S. Sigarreta and H. Cruz-Suárez, Zagreb connection indices on polyomino chains and random polyomino chains, Open Math. 22 (2024), no. 1, 20240057.
https://doi.org/10.1515/math-2024-0057
[34] S.C. Sigarreta, S.M. Sigarreta, and H. Cruz-Suárez, On degree–based topological indices of random polyomino chains, Math. Biosci. Eng. 19 (2022), no. 9, 8760–8773.
https://doi.org/10.3934/mbe.2022406
[37] S. Yousaf, Z. Iqbal, S. Tariq, A. Aslam, F. Tchier, and A. Issa, Computation of expected values of some connectivity based topological descriptors of random cyclooctane chains, Sci. Rep. 14 (2024), Article number: 7713.
https://doi.org/10.1038/s41598-024-57175-y
[38] W. Zhang, L. You, H. Liu, and Y. Huang, The expected values and variances for Sombor indices in a general random chain, Appl. Math. Comput. 411 (2021), 126521.
https://doi.org/10.1016/j.amc.2021.126521