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17. listopadu 15, 708 33 Ostrava, Czech Republic
michael.kubesa@vsb.cz

Received: 11 December 2023; Accepted: 7 October 2024

Published Online: 5 November 2024

Abstract: In this paper, we continue investigation of decompositions of complete

graphs into graphs with seven edges. The spectrum has been completely determined

for such graphs with at most six vertices. Connected graphs with seven edges and seven
vertices are necessarily unicyclic and the spectrum for bipartite ones was completely

determined by the authors. Connected graphs with seven edges and eight vertices are
trees and the spectrum was found by Huang and Rosa. As a next step in the quest of

completing the spectrum for all graphs with seven edges, we completely solve the case

of disconnected bipartite graphs with seven edges and eight vertices.
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1. Introduction

Graph decompositions have been extensively studied for decades and became one of

the classical themes in graph theory. Decomposition of complete graphs into mutually

isomorphic subgraphs is probably the most popular topic within this area. We say

that a graph G decomposes Kn if there exist subgraphs G1, G2, . . . , Gs of Kn, all

isomorphic to G, such that every edge of Kn appears in exactly one copy Gi of G.

One selects a class of graphs G, finite or infinite, and classifies complete graphs that
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2 Decomposition of complete graphs into disconnected bipartite graphs

admit a decomposition into all graphs in G. A typical example of this is the Ringel

Conjecture [10] stating that every tree on n + 1 vertices decomposes the complete

graph K2n+1.

In this paper we continue the effort to classify all graphs with a given (small) number of

vertices and/or edges and determine which complete graphs they decompose. Almost

all graphs with up to six edges have been fully classified, as well as almost all graphs

with eight edges. For a detailed overview, we refer the reader to [6]. For graphs

with seven edges, much less is known. An overview of known results is presented in

Section 2.

We continue in this direction by classifying all disconnected bipartite graphs with

seven edges and eight vertices decomposing complete graphs. All such graphs are

unicyclic with exactly two components. A unicyclic graph is a simple finite graph

without loops containing exactly one cycle.

Our methods are mostly based on Rosa-type labelings, introduced by Rosa in

1967 [12].

2. Known results

While the graphs with at most six edges, as well as those with eight edges have been

almost completely classified except for about a dozen of cases, the class of graphs

with seven edges is still wide open.

Graphs with seven edges and five vertices are always connected and were classified by

Bermond, Huang, Rosa, and Sotteau [1].

Theorem 1 (Bermond et al. [1]). There exists a G-decomposition of Kn for a graph
G on seven edges and five vertices if and only if

1. G = K5 − K1,3, n ≡ 0, 1 (mod 7), n ≥ 14 except possibly when n ∈ {119, 120,147,
203, 204}, or

2. G = K5 − K3, n ≡ 1, 7 (mod 14), except possibly when n ∈ {119, 120, 147, 203, 204},
or

3. G = K5 − (P3 ∪ P2), n ≡ 0, 1 (mod 7), n 6= 8, 14 except possibly when n ∈ {16,42,
56,92, 98, 120}, or

4. G = K5 − (P4), n ≡ 0, 1 (mod 7), n 6= 8.

Blinco [2] and Tian, Du, and Kang [13] studied connected graphs with seven edges

and six vertices. The only disconnected graph with seven edges and six vertices is

K4 ∪K2 and the spectrum for this graph was also found in [13].

Theorem 2 (Blinco [2], Tian et al. [13]). There exists a G-decomposition of Kn

for a graph G on seven edges and six vertices if and only if n ≡ 0, 1 (mod 7) except for eight
exceptions when n = 7 or n = 8.
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All graphs with seven edges and seven vertices are either connected and unicyclic or

disconnected. A complete solution for connected bipartite (and necessarily unicyclic)

graphs was obtained by the authors in [6].

Theorem 3 (Froncek, Kubesa [6]). There exists a G-decomposition of Kn for a
connected bipartite unicyclic graph G on seven edges and seven vertices if and only if n ≡ 0, 1
(mod 7) except for three exceptions when n = 7 and two exceptions when n = 8.

The only remaining connected class for seven edges and seven vertices is then unicyclic

tripartite graphs. Therefore, we state here our first open problem.

Problem 1. Determine the G-decomposition spectrum for connected tripartite graphs on
seven edges and seven vertices (which are necessarily unicyclic).

We do not know any result classifying disconnected graphs with seven edges and seven

vertices. Our second open problem is then the following.

Problem 2. Determine the G-decomposition spectrum for disconnected graphs on seven
edges and seven vertices.

Connected graphs with seven edges and eight vertices are trees, which were investi-

gated by Huang and Rosa [7].

Theorem 4 (Huang, Rosa [7]). There exists a G-decomposition of Kn for a connected
graph G on seven edges and eight vertices (that is, a tree) if and only if n ≡ 0, 1 (mod 7), n ≥
8 except for nine exceptions when n = 8.

In Section 5 we take first steps towards determining the spectrum for disconnected

graphs on seven edges and eight vertices by finding it for all such bipartite graphs.

These graphs are necessarily unicyclic. The obvious necessary conditions for Kn to

be decomposable into such graphs are n ≥ 8 and n ≡ 0, 1 (mod 7).

Graphs with seven edges and more than eight vertices are necessarily disconnected.

We are not aware of any results in this direction.

3. Definitions and tools

Disclaimer. The whole section is copied almost verbatim from the authors’ previous

paper [6] as the topic is very similar and tools used here are identical.

The following definition has been used in different variations for years, and we present

it just for the sake of completeness.
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Definition 1. Let H be a graph. A decomposition of the graph H is a collection of
pairwise edge-disjoint subgraphs D = {G1, G2, . . . , Gs} such that every edge of H appears
in exactly one subgraph Gi ∈ D.
We say that the collection forms a G-decomposition of H (also known as an (H,G)-design)
if each subgraph Gr is isomorphic to a given graph G. If H is the complete graph Kn, then
we can use just the term G-design.

Because we focus solely on decompositions of complete graphs, we only use the term

G-decomposition or G-design.

Definition 2 (Rosa [12]). A G-decomposition of the complete graph Kn is cyclic if
there exists an ordering (x0, x1, . . . , xn−1) of the vertices of Kn and a permutation ϕ of the
vertices of Kn defined by ϕ(xj) = xj+1 for j = 0, 1, . . . , n− 1 inducing an automorphism on
D, where the addition is performed modulo n.

Definition 3 (Huang, Rosa [7]). A G-decomposition of the complete graph Kn

is 1-rotational if there exists an ordering (x0, x1, . . . , xn−1) of the vertices of Kn and a
permutation ϕ of the vertices of Kn defined by ϕ(xj) = xj+1 for j = 0, 1, . . . , n − 2 and
ϕ(xn−1) = xn−1 inducing an automorphism on D, where the addition is performed modulo
n− 1.

We will use the interval notation [k, n] for the set of consecutive integers {k, k+1, k+

2, . . . , n}. When k = 1, the interval is denoted simply by [n].

One of the basic and most useful tools for finding G-designs is the following labeling.

Definition 4 (Rosa [12]). Let G be a graph with n edges. A ρ-labeling (sometimes
also called rosy labeling) of G is an injective function f : V (G) → [0, 2n] that induces the
length function ` : E(G)→ [1, n] defined as

`(uv) = min{|f(u)− f(v)|, 2n+ 1− |f(u)− f(v)|}

with the property that

{`(uv) : uv ∈ E(G)} = [1, n].

A graph G possessing a ρ-labeling decomposes the complete graph, as proved by Rosa

in 1967.

Theorem 5 (Rosa [12]). Let G be a graph with n edges. A cyclic G-decomposition of
the complete graph K2n+1 exists if and only if G admits a ρ-labeling.

When a graph G with n edges has a vertex w of degree one and G − w admits a

ρ-labeling, a modification of ρ-labeling can be used to find a G-decomposition of K2n.

Such labeling is known as 1-rotational ρ-labeling and was first used by Huang and

Rosa in [7], although a formal definition was not stated there.
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Definition 5 (Huang, Rosa [7]). Let G be a graph with n edges and edge ww′ where
deg(w) = 1. A 1-rotational ρ-labeling of G consists of an injective function f : V (G) →
[0, 2n− 2]∪ {∞} with f(w) =∞ that induces a length function ` : E(G)→ [1, n− 1]∪ {∞}
which is defined as

`(uv) = min{|f(u)− f(v)|, 2n− 1− |f(u)− f(v)|}

for u, v 6= w and

`(ww′) =∞
with the property that

{`(uv) : uv ∈ E(G)} = [1, n− 1] ∪ {∞}.

This technique was used in [7] and proved only for particular graphs studied in that

paper. The following theorem is considered folklore.

Theorem 6. Let G be a graph with n edges. If G admits a 1-rotational ρ-labeling, then
there exists a 1-rotational G-decomposition of the complete graph K2n.

One can observe that a necessary condition for Kn to admit a G-design for a graph

G with 7 edges is that the number of edges in Kn must be divisible by 7, implying

n ≡ 0, 1 (mod 7). For the graphs we are interested in, the above theorems only allow

decompositions of K14 and K15. Therefore, we will need additional tools, which are

some more restrictive modifications of ρ-labeling.

Definition 6 (Rosa [12]). Let G be a bipartite graph with n edges and a vertex
bipartition U ∪ V . An α-labeling of G is a ρ-labeling f with the additional property that
there exist λ such that f(u) ≤ λ < f(v) ≤ n for every u ∈ U and v ∈ V . The length function
is then defined as

`(uv) = f(v)− f(u).

There are also labelings that are less restrictive yet also produce G-decompositions of

larger complete graphs; that is, K2nk+1 for any k ≥ 1 when G has n edges.

Definition 7 (El-Zanati, Vanden Eynden [4]). Let G be a bipartite graph with n
edges and a vertex bipartition U∪V . A σ+-labeling of G is a ρ-labeling f with the additional
property that for every u ∈ U and v ∈ V if uv ∈ E(G), then f(u) < f(v) and the length
function is defined as

`(uv) = f(v)− f(u).

The σ+-labeling is a generalization of the α-labeling and can be viewed as “locally

α-labeling.” Not all labels in set U need to be smaller that all labels in V , but rather

only labels of all neighbors of a given vertex u ∈ U have to be larger than that of

u and vice versa, all neighbors of v ∈ V have to have labels smaller than the label

of v. Even the relaxed conditions guarantee decompositions of K2nk+1, as proved by

El-Zanati and Vanden Eynden [4].
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Theorem 7 (El-Zanati, Vanden Eynden [4]). Let G be a bipartite graph with n
edges. If G admits a σ+-labeling, then there exists a cyclic G-decomposition of the complete
graph K2nk+1 for every k ≥ 1.

To decompose complete graphs with 2nk vertices into graphs with n edges, we will

use the 1-rotational σ+-labeling. Although the technique using such labeling has been

used before (see, e.g., [5]), a formal definition has not been introduced yet.

Definition 8. Let G be a bipartite graph with n edges, vertex w of degree one and an
edge ww′. A 1-rotational σ+-labeling of G is a 1-rotational ρ-labeling with the additional
property that for every u ∈ U and v ∈ V if u, v 6= w and uv ∈ E(G), then f(u) < f(v) and
the length function is defined as

`(uv) = f(v)− f(u)

for u, v 6= w and

`(ww′) =∞.

It is easy to see that when we have a σ+-labeling where the longest edge is ww′, vertex

w is of degree one and all other vertices have labels at most 2n− 2, the labeling can

be transformed to a 1-rotational σ+-labeling.

Observation 8. Let G be a bipartite graph with n edges, an edge ww′ where w is of
degree one and a σ+-labeling f . If f(w) > f(x) for every x 6= w and `(ww′) = n, then there
exists a 1-rotational σ+-labeling g : V (G) → [0, 2n − 2] ∪ {∞} defined as g(x) = f(x) for
x 6= w and g(w) =∞.

The following analogue of the above theorems was proved recently. Even more general

version of this theorem was proved by Bunge [3] since this paper was originally written.

Theorem 9 (Fahnenstiel, Froncek [5]). Let G be a bipartite graph with n edges and
a vertex of degree one. If G admits a 1-rotational σ+-labeling, then there exists a 1-rotational
G-decomposition of the complete graph K2nk for every k ≥ 1.

In our constructions, we will also need to decompose complete bipartite graphs. The

tools are similar, based on labelings as well. An equivalent of ρ-labeling for bipartite

graphs is called bilabeling and has been used for years by numerous authors. The

following definition is adapted from [4].

Definition 9. Let G be a bipartite graph with n edges and a vertex bipartition U ∪ V .
An α-bilabeling of G is a function f : V (G) → [0, n− 1] that is injective when restricted to
sets U and V, respectively, and the induced length function defined as

`(uv) = (f(v)− f(u))(mod n)
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has the property that

{`(uv) : uv ∈ E(G)} = [0, n− 1].

The following theorem was proved in a simpler form independently by many authors;

e.g., in [4].

Theorem 10. Let G be a bipartite graph with n edges. If G admits an α-bilabeling, then
there exists a G-decomposition of the complete bipartite graph Knk,nm for every k,m ≥ 1.

4. Catalog

Obviously, disconnected bipartite graphs with seven edges and eight vertices (none of

them isolated) are unicyclic with exactly two components.

There are eight such graphs. To catalog them, we use notation defined by Reed and

Wilson in [9]. By XnYm we denote the disjoint union of graphs Xn and Y m, where

Xn and Y m are catalog names of graphs according to [9]. By kXnYm we denote

an edge-disjoint union of k copies of XnYm. We will denote the set of these eight

graphs by G. The graphs are presented in Figure 1.
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Figure 1. The unicyclic bipartite graphs with 7 edges and 8 vertices
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5. Decompositions of K8

The smallest graph satisfying the necessary conditions is K8. Decompositions of K8

into graphs U7T3, U16T2, U17T2, U19T2 and U21T2 are given in Figures 2–6.
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Figure 2. Decomposition of K8 into U7T3
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Figure 3. Decomposition of K8 into U16T2
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Figure 4. Decomposition of K8 into U17T2
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Figure 5. Decomposition of K8 into U19T2
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Figure 6. Decomposition of K8 into U21T2

For easier reference, we call G+ the subclass of G containing the graphs decom-

posing K8 and G− the subclass of those not decomposing K8. That is, G+ =

{U7T3, U16T2, U17T2, U19T,U21T2} and G− = {U3T4, U3T5, U13T2}.
From the constructions shown in Figures 2–6, we immediately obtain the following.

Lemma 1. The graphs in G+ = {U7T4, U16T2, U17T2, U19T2, U21T2} shown in Fig-
ures 2–6 decompose K8.

Now we present proofs of non-existence of G-decompositions of Kn for graphs in

G− = {U3T4, U3T5, U13T2} and n = 8.

We denote the graphs decomposing K8 by Gi, where i = 1, 2, 3, 4. By degGi
(x) we

denote the degree of vertex x in Gi.

The degree set DS(x) of a vertex x ∈ K8 is the unordered multiset {degGi(x)|1 ≤ i ≤
4} of degrees of a particular vertex, which is usually listed in non-increasing order.

Lemma 2. The graph U13T2 does not decompose K8.

Proof. Let Gi, i = 1, 2, 3, 4 be the four copies of G = U13T2 (shown in Figure 1)

decomposing K8. We split the vertex set of K8 into sets X = {x1, . . . , x4} and
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Y = {y1, . . . , y4} and assume that xi is the vertex of degree four in Gi. By 〈X〉
and 〈Y 〉 we denote the cliques induced on the vertex sets X and Y , respectively. To

simplify our arguments, we color the edges of G1 blue, of G2 green, of G3 red, and of

G4 purple.

All vertices xi have their degree sets DS(xi) = {4, 1, 1, 1}. If vertex x1 has all neigh-

bors (called blue neighbors) in G1 in Y , then the fourth vertex of C4(x1) must belong

to X, say it is x2. But this is impossible, because x2 must be in G1 of degree one.

Now suppose the blue neighbors of x1 are x2, y1, y2, y3. Then x2 cannot belong to

C4(x1) as it would be of degree two in G1 and the fourth vertex of C4(x1) must be

y4. Therefore, the isolated blue edge must be x3x4 and we have two blue edges in

〈X〉, namely x1x2 and x3x4.

If x1 has two or three blue neighbors in X, we have at least two blue edges in 〈X〉.
This argument can be repeated for all four graphs Gi, i = 1, 2, 3, 4 showing that each

of them has at least two edges in 〈X〉, the graph induced by the vertex set X. But this

is impossible, because 〈X〉 is the complete graph K4 with six edges. This completes

the proof.

Lemma 3. The graph U3T4 does not decompose K8.

Proof. We use the same notation as above, except that xi is the vertex of degree

three in Gi.

First we show that the whole blue star cannot belong to 〈X〉. Suppose it does. Also

suppose that the edges x2x3 and x2x4 are both green, that is, belong to G2, and

WLOG the third edge of the green star is x2y1. Because the blue star is in 〈X〉, the

blue rectangle must be in 〈Y 〉, leaving only two independent edges in 〈Y 〉 uncolored.

The green rectangle now must be induced on vertices x1, y2, y3, y4 with two adjacent

green edges in 〈Y 〉. But this is impossible, as the only two non-colored edges in 〈Y 〉
are independent.

Therefore, the edges x2x3, x3x4, x4x2 must all belong to different graphs Gi, that is,

have different colors. Therefore, each monochromatic rectangle other than blue must

have two vertices in X and two in Y . Because all edges in 〈X〉 have been already

used, all edges of say red rectangle must be of type xjyk. Then along with the two

remaining red star edges, we have six red edges of type xjyk. The same is true for

red and purple edges fo the same reasons, and we have 18 edges of type xjyk. This is

nonsense proving that there cannot be any complete monochromatic star in 〈X〉.
We know that DS(xi) = {3, 2, 1, 1}, so the vertex x1 must be of degree one in two

graphs Gi, say G2 (green) and G3 (red). Hence, we have a green x1x2 and red x1x3.

Also, x3 must be of degree one in two colors other than red. It cannot be blue, because

we have the edge x1x3 already colored red. So it must be green and purple, and we

have x2x3 green and x3x4 purple. Now x4 must have two incident edges in 〈X〉 of

other colors than purple. Since the edge x3x4 is already purple, it must be a blue

x1x4 and green x2x4. But now we have three green star edges incident with x2, which

was proved impossible above. This contradiction completes the proof.
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Figure 7. σ+-labelings of U3T4, U3T5, U7T3 (left to right)

Figure 8. σ+-labelings of U13T2, U16T2, U17T2 (left to right)

The remaining non-existence result was obtained independently by a computer search

by Rosa [11] and Meszka [8].

Lemma 4 (Rosa [11], Meszka [8]). The graph U3T5 does not decompose K8.

The complete result on G-decompositions of K8 is a direct consequence of Lemmas 1–

4.

Theorem 11. Let G ∈ G. Then there exists a G-decomposition of the complete graph
K8 if and only if G ∈ G+ = {U7T4, U16T2, U17T2, U19T2, U21T2}.

6. Decompositions of Kn for n ≡ 0, 1 (mod 14)

All decompositions of Kn for n ≡ 1 (mod 14) are based on σ+-labelings of the re-

spective graphs.
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Figure 9. σ+-labelings of U19T2, U21T2 (left to right)

Figure 10. 1-rotational ρ-labeling of U21T2

Theorem 12. There exists a G-decomposition of the complete graph K14k+1 into each
graph G ∈ G for every k ≥ 1.

Proof. Because each graph G ∈ G has a σ+ labeling, a decomposition exists by

Theorem 7.

For decompositions of K14k, the labelings we use can be easily modified to 1-rotational

σ+-labelings by replacing the label 7 with ∞ except for graph U21T2, where a 1-

rotational σ+-labeling does not exist. We present the labelings in Figures 7 – 9.

Notice that the σ+-labeling of U21T2 does not satisfy requirements of Theorem 9.

Therefore, the labeling only guarantees a decomposition of K14k+1 but not of K14k.

For that decomposition, we need the following construction.

Lemma 5. A decomposition of the complete graph K14k into the graph U21T2 exists for
any k ≥ 1.

Proof. For k = 1 the result follows from the existence of the 1-rotational ρ-labeling

shown in Figure 10. Notice that the edge lengths are calculated in K13, hence the
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Figure 11. First two copies H1, H2 of U21T2 in (2m)U21T2

Figure 12. First three copies H1, H2, H3 of U21T2 in (2m+ 1)U21T2

edge with the endvertices labeled 0 and 7 has in fact length 6.

Because the labeling in Figure 11 labels an isolated edge with the highest length, it

satisfies the requirements of Theorem 9 when we replace the label 19 and the edge

length 14 by∞. Therefore, U21T2 decomposes the complete graph K14k for any even

k ≥ 2.

For k = 3, we use the labeling used in Figure 12. We call the labeling f and denote

the “lower” partite set on the left (consisting of vertices labeled 0, 1, 2, 3, 5, 8) by X

and the “upper” one on the right by Y . Replacing the vertex label 26 and edge length

21 by ∞, we obtain a 1-rotational ρ-labeling satisfying requirements of Theorem 9,

which guarantees the decomposition.

For k = 2m + 1 ≥ 5, we define the labeling recursively. We denote the copies of

U21T2 in Figure 12 from left to right by H1, H2, H3. For better clarity, we denote the

vertices in copy Hi by xij , y
i
j for i = 1, 2, . . . , k and j = 1, 2, 3, 4. The isolated edge is

xi4y
i
4 and the cycle is labeled in natural order xi1, y

i
1, . . . , y

i
3.

Now we define the labeling f ′ of (2m+ 1)U21T2 as follows.

For xij , y
i
j ∈ Hi, j = 1, 2, 3 we have f ′(xij) = f(xij) and f ′(yij) = f(yij). For xij ∈

Hi, i > 3 we set f ′(xij) = f(xi−2j ) and f ′(yij) = f(yi−2j ) + 14. This way, the copies

H2s and H2s+1 for s = 1, 2, . . . ,m contain edges of lengths 7(2s− 1) + 1, 7(2s− 1) +
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2, . . . , 7(2s − 1) + 14 and the longest edge of length 7k is always the isolated edge

xk4y
k
4 = x2m+1

4 y2m+1
4 in copy Hk = H2m+1. Finally, we replace the label f ′(yk4 ) =

26 + 7(k − 3) by f ′(yk4 ) =∞ and the length of edge xk4y
k
4 is now ∞.

This way, we obtained a 1-rotational ρ-labeling of the graph H = (2m + 1)U21T2

which is an edge-disjoint union of 2m + 1 copies of the graph U21T2. Because the

longest edge of length 7(2m + 1) = 7k is incident with a vertex of degree one, the

labeling satisfies conditions of Theorem 6 and H decomposes K14k. Because H can

be decomposed into 2m+ 1 copies of U21T2, the proof is complete.

Now we can prove the result for n ≡ 0 (mod 14).

Theorem 13. There exists a G-decomposition of the complete graph K14k into each
graph G ∈ G for every k ≥ 1.

Proof. Except for U21T2, all other graphs in G satisfy assumptions of Theorem 9

and therefore decompose K14k for every k ≥ 1. The graph U21T2 decomposes K14k

for every k ≥ 1 by Lemma 5. This completes the proof.

7. Decompositions of Kn for n ≡ 7 (mod 14)

In this case, we let n = 14k+7 and first decompose K14k+7 into graphs K14k,K14−K7

and 2k − 1 copies of K7,7 and then in turn show decompositions of these graphs into

each G ∈ G.

The decomposition of K14k+7 into the above mentioned graphs should be obvious. We

first decompose K14k+7 into K14k,K7 and K14k,7 and then split K14k,7 into 2k copies

of K7,7. Finally, we add K7 back to one of the copies of K7,7 to obtain K14 −K7.

It should not be difficult to observe that this forms aG-decomposition ofK14k+7 when-

ever K14 −K7 and K7,7 are decomposable into G, because K14k is G-decomposable

by Theorem 13.

To show that K7,7 is G-decomposable, it is enough to find an α-bilabeling of G. They

are shown in Figures 13, 14 and 15.

A lemma follows immediately.

Lemma 6. The complete bipartite graph K7,7 is G-decomposable for every G ∈ G.

For decompositions of K14−K7, we combine decompositions of K7,7 and packings of

G − e into K7, where e is a pendant edge of G. Because K7 has 21 edges and the

packing has 18 edges, we obtain a leave (that is, a set of edges that do not appear in

any copy of G in K7) with three edges. We denote the copies of G− e as H1, H2, H3

and the copies of G in the decomposition of K7,7 as Gj for j = 1, 2, . . . , 7.

Now we “swap” edges between the leave and graphs Gj . We take a suitable copy Gj ,

remove and edge ej (denoted in Figure 16 by a blue dotted line) corresponding to e

and add it to Hi (as a blue solid line), obtaining a graph H̃i isomorphic to G. Then
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Figure 13. α-bilabelings of U3T4, U3T5, U7T3 (left to right)

Figure 14. α-bilabelings of U13T2, U16T2, U17T2 (left to right)

we pick one leave edge (drawn as a red dotted line) and place it to Gj − ej (as a solid

red line) to obtain a graph G̃j isomorphic to G as well.

In Figures 16–23 we show the graphs H̃i arising from packings and the three corre-

sponding copies G̃j . The remaining graphs in the decompositions are the copies of Gj

that were not modified, and are not shown in the figures. The leave edges are shown

Figure 15. α-bilabelings of U19T2, U21T2 (left to right)
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in red, the edges moved from Gj to H̃i in blue; the original position is dotted, the

new placement is solid. For graphs U16T2 and U19T2 we move two edges from the

same copy Gj to two different copies Hi. In this case one edge is blue and the other

one green for better readability.

01

11

21

3141

51

61

02

H̃1

01

11

21

3141

51

61

02

H̃2

01

11

21

3141

51

61

02

H̃3

01

11

21

3141

51

61

leave

01

11

21

31

41

51

61

02

12

22

32

42

52

62

G̃1

01

11

21

31

41

51

61

02

12

22

32

42

52

62

G̃2

01

11

21

31

41

51

61

02

12

22

32

42

52

62

G̃3

01

11

21

31

41

51

61

02

12

22

32

42

52

62

G̃4

Figure 16. Copies H̃i and G̃j of U3T4 in K14 −K7
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Figure 17. Copies H̃i and G̃j of U3T5 in K14 −K7
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Figure 18. Copies H̃i and G̃j of U7T3 in K14 −K7
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Figure 19. Copies H̃i and G̃j of U13T2 in K14 −K7
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Figure 20. Copies H̃i and G̃j of U16T2 in K14 −K7
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Figure 21. Copies H̃i and G̃j of U17T2 in K14 −K7
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Figure 22. Copies H̃i and G̃j of U19T2 in K14 −K7
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Figure 23. Copies H̃i and G̃j of U21T2 in K14 −K7
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Lemma 7. The graph K14 −K7 is G-decomposable for every G ∈ G.

Proof. Each decomposition consists of graphs H̃i and G̃j shown in Figures 16–23 and

additional copies Gs arising from the α-bilabeling shown in Figures 13, 14 and 15.

The fact that Kn for n ≡ 7 (mod 14) and n > 7 is decomposable into graphs

Kn−7,K14 − K7 and K7,7 along with Lemmas 6 and 7 immediately yield the fol-

lowing.

Theorem 14. The graph Kn is G-decomposable for every G ∈ G when n ≡ 7 (mod 14)
and n > 7.

8. Decompositions of Kn for n ≡ 8 (mod 14)

In this case, we use a similar approach as in Section 7 but we will need one more

ingredient. This time we let n = 14k + 8 and first decompose K14k+8 into graphs

K14k+1,K14 −K7,K8,7 and 2k − 2 copies of K7,7.

The above decomposition of K14k+8 is similar to the one in the previous section. We

first decompose K14k+8 into K14k+1,K7 and K14k+1,7 and then split K14k+1,7 into

2k− copies of K7,7 and one copy of K8,7. Then we add K7 back to one copy of K7,7

to get K14 −K7.

This indeed forms a G-decomposition of K14k+8 whenever K8 is decomposable into

G, because K14k+1 is G-decomposable by Theorem 12, and the graphs K14−K7 and

K7,7 are G-decomposable by Lemmas 7 and 6, respectively.

Because K8,7 can be decomposed into two graphs K4,7, it is enough to show G-

decompositions of K4,7 into each G ∈ G. They are shown in Figures 24–31.
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Figure 24. Decomposition of K4,7 into U3T4
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Figure 25. Decomposition of K4,3 into U3T5
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Figure 26. Decomposition of K4,3 into U7T3
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Figure 27. Decomposition of K4,3 into U13T2
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Figure 28. Decomposition of K4,3 into U16T2
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Figure 29. Decomposition of K4,3 into U17T2
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Figure 30. Decomposition of K4,3 into U19T2
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Figure 31. Decomposition of K4,3 into U21T2

Lemma 8. The complete bipartite graph K8,7 is G-decomposable for every G ∈ G.

Proof. Because K8,7 can be decomposed into two copies of K4,7 and there exists a

G-decomposition of K4,7 for every G ∈ G, the Lemma follows.

We now again have all ingredients needed for the complete result on this subclass for

n ≡ 8 (mod 14).

Theorem 15. The complete graph Kn for n ≡ 8 (mod 14) is G-decomposable for a graph
G ∈ G if and only if G ∈ G+ and n ≥ 8 or G ∈ G− and n > 8.

Proof. Follows directly from the fact that K14k+8 is decomposable into K14k+1,

K14 −K7,K8,7 and 2k − 2 copies of K7,7, Lemmas 6, 7, 8 and Theorem 12.

9. Conclusion

Our main result now follows.

Theorem 16. The complete graph Kn has a G-decomposition for any G ∈ G if and only
if n ≡ 0, 1 (mod 7), n > 7, except when n = 8 and G ∈ G− = {U3T4, U3T5, U13T2}.

Proof. Decompositions of K8 are characterized in Theorem 11. The case of n ≡ 0, 1

(mod 14) is covered by Theorems 12 and 13. The case of n ≡ 7 (mod 14) is proved

by Theorem 14 and for n ≡ 8 (mod 14) by Theorem 15.
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