[1] M. Afkhami and K. Khashyarmanesh, The cozero divisor graph of a commutative ring., Southeast Asian Bull. Math. 35 (2011), no. 5, 753–762.
[2] M. Afkhami and K. Khashyarmanesh, On the cozero-divisor graphs of commutative rings and their comple-ments., Bull. Malays. Math. Sci. Soc. 35 (2012), no. 4, 935–944.
[3] M. Afkhami and K. Khashyarmanesh, Planar, outerplanar, and ring graph of the cozero-divisor graph of a finite commutative ring, J. Algebra Appl. 11 (2012), no. 6, Artile ID: 1250103.
https://doi.org/10.1142/S0219498812501034
[4] M. Afkhami and K. Khashyarmanesh, On the cozero-divisor graphs and comaximal graphs of commutative rings, J. Algebra Appl. 12 (2013), no. 3, Artile ID: 1250173.
https://doi.org/10.1142/S0219498812501733
[7] M. Bakhtyiari, R. Nikandish, and M.J. Nikmehr, Coloring of cozero-divisor graphs of commutative von Neumann regular rings, Proc. Math. Sci. 130 (2020), no. 1, Article number: 49
https://doi.org/10.1007/s12044-020-00569-5
[8] G. Chartrand and P. Zhang, Introduction to Graph Theory, McGraw-Hill Higher Education, New Delhi, 2005.
[12] I. Gutman, Relating graph energy with vertex-degree-based energies, Vojnoteh. Glas. 68 (2020), no. 4, 715–725.
[13] I. Gutman, Geometric approach to degree-based topological indices: Sombor indices, MATCH Commun. Math. Comput. Chem. 86 (2021), no. 1, 11–16.
[15] Z. Hu, X. Li, and D. Peng, Graphs with minimum vertex-degree function-index for convex functions, MATCH Commun. Math. Comput. Chem. 88 (2022), no. 3, 521–533.
https://doi.org/10.46793/match.88-3.521H
[18] X. Li, Y. Li, and Z. Wang, The asymptotic value of energy for matrices with degree-distance-based entries of random graphs, Linear Algebra Appl. 603 (2020), 390–401.
https://doi.org/10.1016/j.laa.2020.06.020
[19] X. Li, Y. Li, and Z. Wang, Asymptotic values of four Laplacian-type energies for matrices with degree-distance-based entries of random graphs, Linear Algebra Appl. 612 (2021), 318–333.
https://doi.org/10.1016/j.laa.2020.11.005
[20] X. Li and D. Peng, Extremal problems for graphical function-indices and fweighted adjacency matrix, Discrete Math. Lett 9 (2022), 57–66.
[21] X. Li and Z. Wang, Trees with extremal spectral radius of weighted adjacency matrices among trees weighted by degree-based indices, Linear Algebra Appl. 620 (2021), 61–75.
https://doi.org/10.1016/j.laa.2021.02.023
[24] R. Nikandish, M.J. Nikmehr, and M. Bakhtyiari, Metric and strong metric dimension in cozero-divisor graphs, Mediterr. J. Math. 18 (2021), no. 3, Article number: 112.
https://doi.org/10.1007/s00009-021-01772-y
[25] M. Randić, On characterization of molecular branching, J. Am. Chem. Soc. 97 (1975), 6609–6615.
[27] M. Randić, Topological indices, Encyclopedia of Computational Chemistry, P. von Rague Schleyer, Editor-in-Chief, London: Wiley (1998), 3018–3032.
[29] B.A. Rather, M. Imran, and S. Pirzada, Sombor index and eigenvalues of comaximal graphs of commutative rings, J. Algebra Appl. 23 (2024), no. 6, Article ID: 2450115.
https://doi.org/10.1142/S0219498824501159
[31] V.S. Shegehalli and R. Kanabur, Arithmetic-geometric indices of path graph, J. Math. Comput. Sci 6 (2015), no. 1, 19–24.