[2] J. Binwal, R. Devi, and B. Singh, Mathematical modelling and simulation of fingerprint analysis using graph isomorphism, domination, and graph pebbling, Adv. Appl. Discrete Math. 39 (2023), no. 2, 259–284.
https://doi.org/10.17654/0974165823052
[4] M. Defferrard, X. Bresson, and P. Vandergheynst, Convolutional neural networks on graphs with fast localized spectral filtering, Advances in neural information processing systems (Barcelona, Spain) (D.D. Lee, U. von Luxburg, R. Garnett,
M. Sugiyama, and I. Guyon, eds.), 30th Conference on Neural Information Processing Systems, Curran Associates Inc., 57 Morehouse Lane, Red Hook, NY, United States, September 2016.
[6] G. Hurlbert, A survey of graph pebbling, Congr. Numer. 139 (1999), 41–64.
[7] G. Hurlbert, Graph pebbling, pp. 1428–1449, Chapman and Hall/CRC, Kalamazoo, 2013.
[8] G. Isaak, M. Prudente, and J.M. Marcinik III, A pebbling game on powers of paths, Commun. Number Theory Comb. Theory 4, Article No: 1.
[10] A. Khan, S. Hayat, Y. Zhong, A. Arif, L. Zada, and M. Fang, Computational and topological properties of neural networks by means of graph-theoretic parameters, Alex. Eng. J. 66 (2023), 957–977.
https://doi.org/10.1016/j.aej.2022.11.001
[11] J.B. Liu, M.K. Shafiq, H. Ali, A. Naseem, N. Maryam, and S.S. Asghar, Topological indices of m th chain silicate graphs, Mathematics 7 (2019), no. 1, Article
ID: 42.
https://doi.org/10.3390/math7010042
[12] A. Loeffler, R. Zhu, J. Hochstetter, M. Li, K. Fu, A. Diaz-Alvarez, T. Nakayama, J.M. Shine, and Z. Kuncic, Topological properties of neuromorphic nanowire networks, Front. Neurosci. 14 (2020), Article ID: 184.
https://doi.org/10.3389/fnins.2020.00184
[14] A. Lourdusamy, I. Dhivviyanandam, and S. Kither Iammal, Monophonic pebbling number of some standard graphs, South East Asian J. Math. Math. Sci. 21 (2022), 177–182.
[15] A. Lourdusamy, I. Dhivviyanandam, and S. Kither Iammal, Monophonic pebbling number of some families of cycles, Discrete Math. Algorithms Appl. 16 (2023), no. 4, Article ID: 2350038.
https://doi.org/10.1142/S1793830923500386
[16] A. Lourdusamy, I. Dhivviyanandam, and S. Kither Iammal, Monophonic pebbling number of some network-related graphs, J. Appl. Math. Inform. 42 (2024), no. 1, 77–83.
https://doi.org/10.14317/jami.2024.077
[17] C.J. Nelson and S. Bonner, Neuronal graphs: A graph theory primer for microscopic, functional networks of neurons recorded by calcium imaging, Front. Neural Circuits 15 (2021), Article ID: 662882.
https://doi.org/10.3389/fncir.2021.662882
[18] A.P. Paul and A.B. Anisha, Cover edge pebbling number for jahangir graphs and $J_{5,m}, 22 (2023), no. 8, 1721–1728.
[19] A. Sadiquali and P.A.P. Sudhahar, Monophonic domination in special graph structures and related properties, Int. J. Math. Anal. 11 (2017), no. 22, 1089–1102.
https://doi.org/10.12988/ijma.2017.79125