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Abstract: Let GS be a graph obtained by attaching a self-loop to each vertex of
S ⊆ V of a graph G(V,E). The Seidel matrix of GS is S(GS) = [sij ], where sij = −1

if vi and vj are adjacent and vi ∈ S, sij = 1 if vi and vj are non-adjacent, and it is

zero if i = j and vi 6∈ S. If θi(GS) , i = 1, 2, . . . , n, are the eigenvalues of the Seidel
matrix, then the Seidel energy of the graph GS , containing n vertices and σ self-loops,

is defined as
∑n
i=1

∣∣θi(GS) + σ
n

∣∣. In this paper, some basic properties of Seidel energy

of graphs containing self-loops are established.

Keywords: seidel energy (of graph), seidel matrix; energy (of graph), graph with

self-loops
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1. Introduction

The concept of graph energy was introduced in the 1970s and since then became a

popular subject of mathematical investigation, resulting in over one thousand of pub-

lished papers [9]. Until quite recently, only graphs without self-loops were considered.

The first paper on the energy of graphs with self-loops appeared in 2022 [7], and was

followed by a few other articles on the same theme [3, 8, 13, 14]. Although the Seidel

energy was studied in detail in dozens of publications, see e.g. [1, 2, 6, 11, 12], until
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2 Seidel energy of a graph with self-loops

now the Seidel energy of graphs with self-loops was not considered. The present paper

is aimed at filling this gap.

Let G(V,E) be a simple graph of order n and size m. Let S be a subset of V of

order σ. The graph GS is obtained by attaching a self-loop at each vertex of S. The

complement of the graph G, denoted by G is the graph with same vertex set as that

of G, such that two vertices are adjacent if and only they are non-adjacent in G.

The adjacency matrix A(G) of G on n vertices is a square matrix of order n with

elements 1, if the corresponding vertices are adjacent and 0, if the corresponding

vertices are non-adjacent. The Seidel matrix S(G) of G of order n is a square matrix

of order n with elements sij = −1 if vi is adjacent to vj , sij = 1 if vi is non-adjacent

to vj , and sij = 0 if i = j.

2. Preliminaries

Definition 1. [7] The adjacency matrix A(GS) of a graph GS of order n with self-loops
is an n× n square matrix with elements,

(aij)S =


1 if vi and vj are adjacent,

0 if vi and vj are non-adjacent,

1 if i = j and vi ∈ S,
0 if i = j and vi 6∈ S.

Let λi(GS) , 1 ≤ i ≤ n, be the eigenvalues of A(GS). Then the energy of GS is

defined as

E(GS) =

n∑
i=1

∣∣∣λi(GS)− σ

n

∣∣∣
where σ is the number of self-loops. If σ = 0, then the above energy reduces to the

ordinary graph energy [9], i.e., to the sum of absolute values of the eigenvalues.

Definition 2. The Seidel matrix S(GS) of a graph GS of order n with self-loops is an
n× n square matrix with elements,

(sij)S =


−1 if vi and vj are adjacent,

1 if vi and vj are non-adjacent,

−1 if i = j and vi ∈ S,
0 if i = j and vi 6∈ S.

Let θi(GS), i = 1, 2, . . . , n, be the be the eigenvalues of S(GS), pertaining to a graph

GS with |S| = σ self-loops. Then directly from Definition 2, it follows

n∑
i=1

θi(GS) = −σ.
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Bearing this in mind, the Seidel energy of GS is defined as

SE(GS) =

n∑
i=1

∣∣∣θi(GS) +
σ

n

∣∣∣ .
If σ = 0, then the above energy reduces to the ordinary Seidel energy, i.e., to the sum

of absolute values of the Seidel eigenvalues.

Note that for a graph GS of order n,

S(GS) = A(G)−A(GS) = A(G)−A(G) + JS = S(G) + JS .

Here, JS is the square matrix of order n, whose off-diagonal elements are zero, di-

agonal elements are −1 if the corresponding vertex has a self-loop and it is 0 if the

corresponding vertex has no self-loop.

Theorem 1. [4] Let x1, x2, . . . , xn and y1, y2, . . . , yn be real numbers. If there exist real
constants x, y,X and Y such that for each i , i = 1, 2, . . . , n, x ≤ xi ≤ X and y ≤ yi ≤ Y ,
then ∣∣∣∣∣n

n∑
i=1

xi yi −
n∑
i=1

xi

n∑
i=1

yi

∣∣∣∣∣ ≤ α(n)(X − x)(Y − y)
where α(n) = n

[
n
2

] (
1− 1

n

[
n
2

])
. Equality holds if and only if xi = xj and yi = yj for all

1 ≤ i, j ≤ n.

Theorem 2. [5] Let x1, x2, . . . , xn and y1, y2, . . . , yn be real numbers. If there exist real
constants r and R such that for each i, i = 1, 2, . . . , n, r xi ≤ yi ≤ Rxi, then

n∑
i=1

y2i + rR

n∑
i=1

x2i ≤ (r +R)

n∑
i=1

xi yi .

Equality holds if r xi = yi = Rxi for at least one i.

3. Main results

Theorem 3. Let (Kn)S be a complete graph with σ self-loops. Then,

SE((Kn)S) =
n2 − n− 2σ

n
+
√

(n− 1)2 + 4σ . (3.1)

Proof. By row and column operation, det
(
λI − S((Kn)S)

)
is reduced to

(−λ)σ−1(1− λ)n−σ−1
∣∣∣∣−λ −1

−σ 1− λ− n

∣∣∣∣
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and thus the Seidel spectrum of (Kn)S is

 0 1
(1−n)+

√
(n−1)2+4σ

2

(1−n)−
√

(n−1)2+4σ

2

σ − 1 n− σ − 1 1 1


whereas the Seidel energy is

SE((Kn)S) = (σ − 1)
(σ
n

)
+ (n− σ − 1)

(
1 +

σ

n

)
+

1− n+
√

(n− 1)2 + 4σ

2
+
σ

n
+
n− 1 +

√
(n− 1)2 + 4σ

2
− σ

n

and Eq. (3.1) follows.

Note that the Seidel energy of the complete graph (Kn)S with σ self-loops is equal to

the Seidel energy of the ordinary complete graph if and only if either σ = 0 or σ = n.

Theorem 4. Let (Ka,b)S , a ≤ b be a complete bipartite graph with σ self-loops and
a + b = n vertices, a, b ≥ 1. Then, independently of the actual values of a and b, and
independently of the distribution of self-loops,

SE((Ka,b)S) =
n2 − 3n+ 2σ

n
+
√

(n− 3)2 − 4(σ + 2− 2n) . (3.2)

Proof. Let V1, V2 be the partition of the vertex set of (Ka,b)S and σ1, σ2 be the

number vertices having a self-loop in V1 and V2, respectively. Let σ = σ1 + σ2.

The Seidel matrix of (Ka,b)S is then a block matrix

[
Aa×a Ca×b
CTb×a Bb×b

]
, where, A and B are

square matrices with off-diagonal entries 1 and diagonal entries 1 if the corresponding

vertex has a self-loop and 0 if the corresponding vertex does not have a self-loop. C

is a matrix with all entries are equal to −1.

By row and column operations, det
(
λI − S(Ka,b)S

)
is reduced to

(−λ− 1)n−σ1−σ2−2(−λ− 2)σ1+σ2−2

∣∣∣∣∣∣∣∣
−2− λ −1 −1 −1

0 −1− λ −3− 2λ −3− 2λ

0 0 −2− λ −1

−σ1 −a σ2 − a b− a− 1− λ

∣∣∣∣∣∣∣∣ .

Expanding the above determinant we get

(λ+ 1)(λ+ 2)
[
λ2 + (3− a− b)λ+ σ1 + σ2 − 2a− 2b+ 2

]
= (λ+ 1)(λ+ 2)

[
λ2 + (3− n)λ+ σ − 2n+ 2

]
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from which it follows that the remaining four Seidel eigenvalues are

−1 , −2 ,
1

2

[
(n− 3)±

√
(n− 3)2 − 4(σ + 2− 2n)

]
.

As a somewhat unexpected finding, the entire Seidel spectrum of (Ka,b)S depends

only on the sum of a and b, and only on the sum of σ1 and σ2, i.e., on n and σ,

respectively. Therefore, the Seidel spectrum of the complete bipartite graph (Ka,b)S
with σ self-loops is, −1 −2

(n−3)+
√

(n−3)2−4(σ+2−2n)
2

(n−3)−
√

(n−3)2−4(σ+2−2n)
2

n− σ − 1 σ − 1 1 1

 .

Its Seidel energy is then

SE((Kp,q)S) = (σ − 1)

(
2n− σ
n

)
+ (n− σ − 1)

(
n− σ
n

)

+
1

2

[
n− 3 +

√
(n− 3)2 − 4(σ + 2− 2n)

]
+
σ

n

+
1

2

[
3− n+

√
(n− 3)2 − 4(σ + 2− 2n)

]
− σ

n

and Eq. (3.2) follows.

Note that the Seidel energy of the complete bipartite graph (Ka,b)S with σ self-loops

is equal to the Seidel energy of the ordinary complete graph if and only if either σ = 0

or σ = n, where n = a+ b.

Lemma 1. Let GS be a graph containing |S| = σ self-loops. Then SE(GS) = SE(G), if
σ = 0 and σ = n.

Proof. If σ = 0, then GS ∼= G and therefore, SE(GS) = SE(G). If σ = n, then

θi(GS) = θi(G)− 1 since S(GS) = S(G)− In. Therefore,

SE(GS) =

n∑
i=1

∣∣∣θi(G)− 1 +
σ

n

∣∣∣ =

n∑
i=1

|θi(G)| = SE(G).

Lemma 2. Let θi(GS), i = 1, 2, . . . , n, be the Seidel eigenvalues of the graph GS with
|S| = σ. Then,

n∑
i=1

θ2i (GS) = n(n− 1) + σ.
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Proof. Let GS be a graph obtained from G by adding |S| = σ self-loops. Let m, m

be the number of edges of G and G respectively. Consider,

n∑
i=1

θ2i (GS) =

n∑
i=1

(S(G) + JS)
2
ii =

n∑
i=1

(
A(G)−A(G) + JS

)2
ii

=

n∑
i=1

(A(G))2ii −
n∑
i=1

(A(G)A(G))ii +

n∑
i=1

(A(G)JS)ii

−
n∑
i=1

(A(G)A(G))ii +

n∑
i=1

((A(G))2)ii −
n∑
i=1

(A(G)JS)ii

+

n∑
i=1

(JSA(G))ii +

n∑
i=1

(JSA(G))ii −
n∑
i=1

(JS)2ii

and note that

n∑
i=1

(A(G))2ii = 2m ,

n∑
i=1

(A(G))2ii = 2m ,

n∑
i=1

(JS)2ii = σ

n∑
i=1

(A(G)A(G))ii =

n∑
i=1

(A(G)A(G))ii = 0

n∑
i=1

(A(G)JS)ii =

n∑
i=1

(JSA(G))ii = 0

n∑
i=1

(A(G)JS)ii =

n∑
i=1

(JSA(G))ii = 0 .

Lemma 2 follows now by recalling that m+m =
(
n
2

)
.

Lemma 3. Let θi(GS), i = 1, 2, . . . , n, be the Seidel eigenvalues of the graph GS with
|S| = σ. Then,

n∑
i=1

∣∣∣θi(GS) + σ

n

∣∣∣2 = n(n− 1) + σ − σ2

n
.

Proof.

n∑
i=1

∣∣∣θi(GS) +
σ

n

∣∣∣2 =

n∑
i=1

(
θ2i (GS) + 2θi(GS)

σ

n
+
σ2

n2

)
= 2m+ 2m+ σ − σ2

n
.

Theorem 5. For the graph GS, obtained by attaching σ self-loops to the vertices of G on
n vertices,

SE(GS) ≤ n
√
n− 1 +

σ

n
−
(σ
n

)2
.
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Proof. The quantity
n∑
i=1

n∑
j=1

( ∣∣θi(GS) + σ
n

∣∣−∣∣θj(GS) + σ
n

∣∣ )2 is non-negative. There-

fore,

n

n∑
i=1

∣∣∣θi(GS) +
σ

n

∣∣∣2 + n

n∑
j=1

∣∣∣θj(GS) +
σ

n

∣∣∣2 − 2

n∑
i=1

∣∣∣θi(GS) +
σ

n

∣∣∣ n∑
j=1

∣∣∣θj(GS) +
σ

n

∣∣∣ ≥ 0.

By Lemma 3 and from the definition of Seidel energy of GS , it follows that

2SE(GS)2 ≤ 2n

(
n(n− 1) + σ − σ2

n

)

which implies Theorem 5.

Theorem 6. Let GS be a graph obtained by attaching σ self-loops to the vertices of G on
n vertices. Then,

SE(GS) ≥

√
n

(
n(n− 1) + σ − σ2

n

)
+ n(n− 1)D2/n

where D =
∣∣det (S(GS) + σ

n
In
)∣∣.

Proof. By the arithmetic-geometric mean inequality,

1

n(n− 1)

∑
i 6=j

∣∣∣θi(GS) +
σ

n

∣∣∣ ∣∣∣θj(GS) +
σ

n

∣∣∣ ≥
∏
i 6=j

∣∣∣θi(GS) +
σ

n

∣∣∣ ∣∣∣θj(GS) +
σ

n

∣∣∣
 1

n(n−1)

=

(
n∏
i=1

∣∣∣θi(GS) +
σ

n

∣∣∣2(n−1)) 1
n(n−1)

=

(
n∏
i=1

∣∣∣θi(GS) +
σ

n

∣∣∣)2/n

=

∣∣∣∣∣
n∏
i=1

(
θi(GS) +

σ

n

)∣∣∣∣∣
2/n

=
∣∣∣det

(
S(GS) +

σ

n
In

)∣∣∣2/n = D2/n.

Therefore, ∑
i 6=j

∣∣∣θi(GS) +
σ

n

∣∣∣ ∣∣∣θj(GS) +
σ

n

∣∣∣ ≥ n(n− 1)D2/n. (3.3)
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Now consider,

SE(GS)2 =

(
n∑
i=1

∣∣∣θi(GS) +
σ

n

∣∣∣)2

=

n∑
i=1

∣∣∣θi(GS) +
σ

n

∣∣∣2 +
∑
i 6=j

∣∣∣θi(GS) +
σ

n

∣∣∣ ∣∣∣θj(GS) +
σ

n

∣∣∣ . (3.4)

Theorem 6 follows from Lemma 3 by substituting Eq. (3.3) into Eq. (3.4).

It should be noted that Theorems 5 and 6 are obtained by reasonings analogous to

those used in the theory of ordinary graph energy [9, 10].

Theorem 7. Let θ1(GS), θ2(GS), . . . , θn(GS) be the Seidel eigenvalues of the graph GS
containing σ self-loops. Then,

SE(GS) ≥ n
√
n− 1 +

σ

n
−
(σ
n

)2
− 1

4

(∣∣∣θ1(GS)+ σ

n

∣∣∣−∣∣∣θn(GS)+ σ

n

∣∣∣)2. (3.5)

Proof. Let
∣∣θ1(GS) + σ

n

∣∣ ≥ ∣∣θ2(GS) + σ
n

∣∣ ≥ · · · ≥ ∣∣θn(GS) + σ
n

∣∣. By substituting

xi = yi =
∣∣θi(GS) + σ

n

∣∣, x = y =
∣∣θn(GS) + σ

n

∣∣, and X = Y =
∣∣θ1(GS) + σ

n

∣∣ in

Theorem 1 and noting that α(n) ≤ n2

4 , we get∣∣∣∣∣∣n
n∑
i=1

∣∣∣θi(GS) +
σ

n

∣∣∣2 −( n∑
i=1

∣∣∣θi(GS) +
σ

n

∣∣∣)2
∣∣∣∣∣∣ ≤ n2

4

(∣∣∣θ1(GS) +
σ

n

∣∣∣− ∣∣∣θn(GS) +
σ

n

∣∣∣)2 .
Noting that

n∑
i=1

∣∣∣θi(GS) +
σ

n

∣∣∣ = SE(GS)

and
n∑
i=1

∣∣∣θi(GS) +
σ

n

∣∣∣2 = 2m+ 2m+ σ − σ2

n
= n(n− 1) + σ − σ2

n
(3.6)

we obtain

n

(
n(n− 1) + σ − σ2

n

)
− (SE(GS))2 ≤ n2

4

(∣∣∣θ1(GS) +
σ

n

∣∣∣− ∣∣∣θn(GS) +
σ

n

∣∣∣)2 .
This implies the inequality (3.5).

Theorem 8. Using the same notation as in Theorem 7,

SE(GS) ≥
n(n− 1) + σ − σ2

n
+
∣∣θ1(GS) + σ

n

∣∣ ∣∣θn(GS) + σ
n

∣∣∣∣θ1(GS) + σ
n

∣∣+ ∣∣θn(GS) + σ
n

∣∣ .
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Proof. Let, as before,
∣∣θ1(GS) + σ

n

∣∣ ≥ ∣∣θ2(GS) + σ
n

∣∣ ≥ · · · ≥ ∣∣θn(GS) + σ
n

∣∣. By

substituting xi = 1, yi =
∣∣θi(GS) + σ

n

∣∣, r =
∣∣θn(GS) + σ

n

∣∣, and R =
∣∣θ1(GS) + σ

n

∣∣ in

Theorem 2, we get

n∑
i=1

∣∣∣θi(GS) +
σ

n

∣∣∣2 +
∣∣∣θ1(GS) +

σ

n

∣∣∣ ∣∣∣θn(GS) +
σ

n

∣∣∣ n∑
i=1

12

≤
(∣∣∣θ1(GS) +

σ

n

∣∣∣+
∣∣∣θn(GS) +

σ

n

∣∣∣) n∑
i=1

∣∣∣θi(GS) +
σ

n

∣∣∣ .
Taking into account

n∑
i=1

∣∣∣θi(GS) +
σ

n

∣∣∣ = SE(GS)

and Eq. (3.6), we get

n(n− 1) + σ − σ2

n
+ n

∣∣∣θ1(GS) +
σ

n

∣∣∣ ∣∣∣θn(GS) +
σ

n

∣∣∣
≤
(∣∣∣θ1(GS) +

σ

n

∣∣∣+
∣∣∣θn(GS) +

σ

n

∣∣∣)SE(GS)

from which the inequality in Theorem 8 straightforwardly follows.

4. Conclusion

In this article we have obtained some basic results on the Seidel energy of graphs

with self-loops, together with a few lower and upper bounds. The Seidel energy of

complete and complete bipartite graphs with self-loops are also calculated.
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