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Abstract: The algebraic approach to graph theoretical problems has been exten-
sively studied by looking at the spectrum of a graph’s representation matrix. In this

paper, we investigate some relationships between the metric dimension of a graph G

and its nullity, that is, the multiplicity of eigenvalue 0 in the adjacency matrix of G, and
the eigenvalues of its Laplacian and distance matrices. Furthermore, we also present a

relationship between the metric dimension of a graph and its nullity, using twin classes.
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1. Introduction

Throughout this paper, all graphs are finite, simple, and undirected. The concept

of metric dimension of a graph was introduced by Slater [26] and by Harary and

Melter [16] independently as a distance-based concept on graphs. They introduced

the term locating set or resolving set as a set of vertices which is used as a reference

to identify each vertex of a graph uniquely. Research on graph metric dimension and

its variations has grown rapidly in the last decades as they have direct applications

to some real world problems such as robot navigation [20] and chemistry [6]. See the

works of Tillquist, Frongillo, and Lladser [27], and Kuziak and Yero [21] for surveys on

∗ Corresponding Author



2 On the metric dimension and spectrum of graphs

the metric dimension of graphs, and [1, 7, 25] for some recent research on this topic.

Furthermore, it is known that the problem of determining the metric dimension of a

graph is NP-complete [13].

The algebraic approach to graph theoretical problems has been extensively studied,

specifically by using matrices to represent a graph. Matrix properties such as eigen-

values, rank, determinant, etc., may give information on the structure of the graph

it represents. See, for example, the works of Bapat [3], Biggs [5], and Cvetković,

Rowlinson, and Simić [8], and the references cited therein for extensive results on this

topic. In this paper, we investigate some relations between the metric dimension of a

graph with the eigenvalues of its adjacency, distance, and Laplacian matrix.

In general, we refer to Diestel [10] for the basic definitions related to graphs. An empty

graph ∅ is the graph without any vertices and edges. Let G = (V,E) be a graph. Two

vertices u, v ∈ V are said to be adjacent if uv ∈ E. The open neighborhood of a vertex

u ∈ V is the set NG(u) := {v ∈ V : uv ∈ E}, and the closed neighborhood of u is

NG[u] := {u} ∪NG(u). The degree of a vertex u ∈ V , denoted by deg(u), is the size

of NG(u). A vertex is called pendant if it has degree one and quasipendant if it is

adjacent to a pendant vertex. Let p(G) and q(G) denote the number of pendant and

quasipendant vertices of G, respectively. For two distinct vertices u, v in a graph G,

the distance d(u, v) of u and v is the length of a shortest path connecting u and v.

For two integers a ≤ b, we define [a, b] := {x ∈ Z : a ≤ x ≤ b}.
Let G = (V,E) be a graph and u, v ∈ V , u 6= v. We say that a vertex s ∈ V resolves

u and v if d(u, s) 6= d(v, s). Let S = {s1, s2, . . . , sk} ⊆ V be an ordered subset of

V . The representation of v ∈ V with respect to S, denoted by r(v|S), is defined as

r(v|S) = (d(v, s1), d(v, s2), d(v, s3), . . . , d(v, sk)). We call S a resolving set of G if each

vertex of G has a unique representation with respect to S, that is, r(u|S) 6= r(v|S) for

every distinct pair u, v ∈ V . In other words, S is a resolving set if and only if every

pair of distinct vertices u, v ∈ V is resolved by an element of S. A resolving set of G

with minimum size is called a basis of G. The cardinality of a basis of G is called the

metric dimension of G, denoted by dim(G).

Example 1. Consider the graph G in Figure 1 where V (G) = {v1, v2, v3, v4, v5}. Let
S = {v3, v5} ⊆ V (G) where the nodes v3 and v5 are circled. The representations of all vertices
in G with respect to S are given, namely, r(v1|S) = (1, 2), r(v2|S) = (1, 1), r(v3|S) = (0, 1),
r(v4|S) = (2, 1), and r(v5|S) = (1, 0). Since all vertices in G have distinct representations
with respect to S, it follows that S is a resolving set of G of size 2. Furthermore, since the
minimum vertex degree in G is 2, we have that for any singleton T = {v}, where v ∈ V (G),
there are at least two neighbors of v, say x and y, where r(x|T ) = (1) = r(y|T ). Thus, any
singleton in G cannot be a resolving set of G. Therefore, S is a basis of G, and dim(G) = 2.

Let G = (V,E) be a graph of order n with V = {v1, v2, . . . , vn}. The adjacency matrix

of G is the n × n matrix A = A(G) = AG whose entry aij is equal to 1 if vi and

vj are adjacent, and 0 otherwise. The Laplacian matrix, or simply Laplacian, of G is

defined as L = L(G) := ∆ − A(G), where ∆ = diag(deg(v1),deg(v2), . . . ,deg(vn)).



M. Farhan, E.T. Baskoro 3

v1 : (1, 2)

(1, 1) : v2

(2, 1) : v4

v3 : (0, 1)

v5 : (1, 0)

Figure 1. The graph G and the representations of all vertices in G with respect to S

The distance matrix of G is the matrix D = D(G) = (dij), where dij = d(vi, vj). For

M ∈ {A,L,D}, the M-spectrum of G, denoted by specM(G), is the set of eigenvalues

of M(G) together with their multiplicities. If the distinct eigenvalues of M(G) are

λ1 > λ2 > · · · > λs, and their multiplicities are m1,m2, . . . ,ms, respectively, then we

write specM(G) = {λm1
1 , λm2

2 , . . . , λms
s }. For an eigenvalue λ, we may write mM(λ)

to denote the multiplicity of λ in specM(G). The nullity of G, denoted by η(G), is

the multiplicity of eigenvalue 0 in specA(G), that is, η(G) = mA(0). For the trivial

case, we define η(∅) = 0. For further discussions on graph nullity, see a nice survey

paper by Gutman and Borovicanin [15]. The followings are some fundamental results

on the nullity of graphs which will be useful in our results.

Lemma 1 ([9]). Let G be a bipartite graph containing a pendant vertex, say v, and H
be the graph obtained from G by deleting v and its neighbor. Then, η(G) = η(H).

Lemma 2 ([15]). Let G = G1 ∪ G2 ∪ · · · ∪ Gt, where G1, G2, . . . , Gt are connected
components of G. Then, η(G) =

∑t
i=1 η(Gi).

For the L-spectrum and D-spectrum of a tree, we have the following results.

Theorem 1 ([14]). Let T be a tree of order n ≥ 2. If µ is an eigenvalue of L(T ), then
mL(µ) ≤ p(T )− 1.

Theorem 2 ([11]). If T is a tree of order n ≥ 2, then mL(1) ≥ p(T )− q(T ).

Corollary 1 ([23]). Let T be a tree of order n ≥ 2. If ∂ is an eigenvalue of D(T ), then
mD(∂) ≤ p(T ).

Corollary 2 ([23]). If T is a tree of order n ≥ 2, then mD(−2) ≥ p(T )− q(T )− 1.

This paper is organized as follows. Section 2 is devoted to investigating some relations

between the metric dimension of a tree and its nullity, L-spectrum, and D-spectrum.

Section 3 discusses the relationship between the metric dimension of a graph and its
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Figure 2. The tree T with its pendants, major vertices, and branches

nullity using twin classes. Later in Section 4, we provide some open problems related

to our results.

2. The metric dimension and spectrum of trees

Before we state our main results, we present some elementary definitions, results, and

observations that motivate this discussion. The following definitions can be found in

[6]. A vertex of degree at least 3 in a graph G is called a major vertex of G. Any

pendant vertex u of G is said to be a terminal vertex of a major vertex v of G if

d(u, v) < d(u,w) for every other major vertex w of G. The terminal degree ter(v) of

a major vertex v is the number of terminal vertices of v. A major vertex v of G is

an exterior major vertex of G if it has a positive terminal degree. Let ex(G) denote

the number of exterior major vertices of G. In [6], Chartrand, Eroh, Johnson, and

Oellermann described the metric dimension of a tree in the following way.

Theorem 3 ([6]). If T is a tree other than a path, then dim(T ) = p(T )− ex(T ).

Example 2. Let us observe the tree T in Figure 2. The pendant vertices of T are [1, 11],
hence p(T ) = 11. The major vertices of T are {a, b, c, d, e, f}. For the major vertex a, its
terminal vertices are {1, 2, 3}, hence ter(a) = 3. On the other hand, the major vertex b has
no terminal vertex, hence ter(b) = 0. For the remaining major vertices, we have ter(c) = 3,
ter(d) = 0, ter(e) = 3, and ter(f) = 2. It follows that the exterior major vertices of G
are {a, c, e, f}, hence ex(T ) = 4. Therefore, Theorem 3 implies dim(T ) = p(T ) − ex(T ) =
11− 4 = 7.

In this paper, we use the following additional terms. For an exterior major vertex

v in G, a tail of v is a path connecting v to one of its terminal vertex, excluding v.
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Thus, an exterior major vertex v has ter(v) tails. Note that the term legs used in

[20] is equivalent to tails in this paper. We call a tail odd or even if it has an odd or

even number of vertices, respectively. A branch B is a subgraph of G induced by an

exterior major vertex v in G and all of its tails. In this case, we call v the stem vertex

of B. Thus, a branch with n tails is a subdivision of the star graph K1,n. We say a

branch B is of Type I if it has at least one odd tail and Type II otherwise. In Figure

2, the branches of T in Figure 2 are the blocked subgraphs B1, B2, B3, and B4. The

vertex c is the stem of B2. The branches B2, B3, and B4 are of Type I, while the

branch B1 is of Type II.

With these additional definitions, we may rewrite the metric dimension formula for

a tree T as in the following theorem, an equivalent result that was proved in [20].

This indicates that the metric dimension of a tree depends only on the structure of

its branches.

Theorem 4 ([20]). If T be a tree other than a path, then

dim(T ) =
∑

v∈V ;ter(v)>1

(ter(v)− 1).

This discussion is motivated by the following observation. Consider a star graph K1,n

where n ≥ 2. By Theorem 3 or Theorem 4, it is easy to see that dim(K1,n) = n− 1.

On the other hand, it is easy to verify that the nullity of K1,n is also n − 1, that is,

η(K1,n) = n− 1. Thus, we have dim(K1,n) = η(K1,n). Since the metric dimension of

a tree only depends on the structure of its branches (Theorem 4), and a branch is a

subdivision of a star graph with the same number of tails, whose nullity is known, we

suspect that there is a connection between the metric dimension of trees with their

nullity. In fact, as we prove in our results, this is indeed the case.

Now, we are ready to state our main results on the metric dimension of a tree in

terms of its nullity and some of its subgraphs. First, we consider the case where the

tree has at least one odd tail.

Theorem 5. Let T be a tree other than a path. Let BI and BII be the sets of Type I and
Type II branches in T , respectively. Let e2 be the number of even tails in T . If T has an odd
tail, then

dim(T ) = η(T )− η(T − BI)− |BII|+ e2

where T − BI is the graph obtained from T by deleting all Type I branches in T .

Proof. Let B1, . . . , Bk be the branches in T . Since T has at least one odd tail, there

exists a Type I branch in T . Suppose that |BI| = p ≥ 1. Without loss of generality,

let BI = {B1, B2, . . . , Bp} and BII = {Bp+1, Bp+2, . . . , Bk}. Observe that we may

construct a sequence of graphs G0, G1, . . . , Gp where G0 := T , Gp = T − BI, and

Gj = Gj−1 − Bj = T −
⋃j

i=1Bi for j ∈ [1, p]. So, the graph Gj is obtained from T

by deleting the branches B1, B2, . . . , Bj of T .
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Podd

PevenLj
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P1

cj

(a) Gj−1

Podd

PevenLj

Gj

(b) Gj−1 − P1 − cj

Figure 3. (a) The grouping of the vertices in Gj−1 and (b) the connected components of Gj−1 −P1 − cj

For an arbitrary j ∈ [1, p], consider the graph Gj−1 and Type I branch Bj with

stem vertex cj . Suppose that Bj has e(j) tails, e
(j)
1 odd tails, and e

(j)
2 even tails,

hence e(j) = e
(j)
1 + e

(j)
2 and e2 =

∑k
i=1 e

(i)
2 . Let Podd be the set of all odd tails

of Bj , and let Peven be the set of all even tails of Bj . Pick an arbitrary odd tail,

say P1, and then delete P1 and cj from Gj−1. Since P1 is an odd tail, we have

η(Gj−1) = η(Gj−1 − P1 − cj) by Lemma 1. Observe that the graph Gj−1 − P1 − cj
has several connected components (see Figure 3): Gj , odd tails of Bj except P1, and

even tails of Bj . By Lemma 1, we have

η(P ) =

{
1, if P ∈ Podd,

0, if P ∈ Peven,

since successively deleting a pendant vertex and its neighbor of a path yields a single

vertex if it has an odd order, and an empty graph if it has an even order.

Consequently, by Lemma 2, we have

η(Gj−1) = η(Gj−1 − P1 − cj)

= η(Gj) +
∑

P∈Podd

η(P ) +
∑

P∈Peven

η(P )

= η(Gj) + (e
(j)
1 − 1)

Therefore, we have the relation η(Gj) = η(Gj−1)−(e
(j)
1 −1) for j ∈ [1, p]. By applying

this relation successively, we obtain

η(T − BI) = η(Gp) = η(G0)−
p∑

i=1

(e
(i)
1 − 1) = η(T )−

p∑
i=1

(e
(i)
1 − 1).
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Finally, since
∑k

i=1(e(i) − 1) = dim(T ) by Theorem 4, we have

η(T − BI) = η(T )−
k∑

i=1

(e
(i)
1 − 1) +

k∑
i=p+1

(e
(i)
1 − 1)

= η(T )−
k∑

i=1

(e(i) − 1− e(i)2 ) +

k∑
i=p+1

(0− 1)

= η(T )−
k∑

i=1

(e(i) − 1) +

k∑
i=1

e
(i)
2 − (k − p)

= η(T )− dim(T ) + e2 − k + p.

Since k − p = |BII|, the result follows.

Example 3. Let us reobserve the tree T in Figure 2. The subgraph T − BI is depicted
in Figure 4. It is easy to verify using Lemma 1 that η(T ) = 1, η(T − BI) = 0, |BII| = 1,
and e2 = 7. Therefore, by Theorem 5, we obtain dim(T ) = η(T )− η(T − BI)− |BII|+ e2 =
1− 0− 1 + 7 = 7, the same result as in Example 2.

Figure 4. T − BI

The following theorem gives another relationship between the metric dimension of a

tree other than a path and the nullity of some graph operations applied to the tree.

In this theorem, we no longer need information about Type I and Type II branches

of the tree, as in Theorem 5. For that, we need the following definitions. Let T be

a tree. We denote by s(T ) the tree obtained from T by subdividing every edge of T

once. We denote by [T ]p ([T ]b) the tree obtained from T by deleting all of its pendant

vertices (branches).

Theorem 6. If T is a tree other than a path, then

dim(T ) = η([s(T )]p)− η([s(T )]b).

Furthermore, if T has only even tails, then

dim(T ) = η([T ]p)− η([T ]b).
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Proof. We prove the first part. Observe that s(T ) has only even tails, so all tails of

[s(T )]p are odd and all branches of [s(T )]p are of Type I. By Theorem 5, we have

dim([s(T )]p) = η([s(T )]p)− η([s(T )]p − BI)− |BII|+ e2 = η([s(T )]p)− η([s(T )]b)

since |BII| = 0 dan e2 = 0 in [s(T )]p. Since all tails of s(T ) are even with an order

at least two, deleting pendant vertices of every tail does not delete the tail. Thus,

the number of tails in every branch in [s(T )]p is equal to the number of tails in every

branch in T . Consequently, by Theorem 4, we have dim([s(T )]p) = dim(T ), and the

assertion follows.

For the second part, suppose that T has only even tails. Similar to the previous part,

all tails of [T ]p are odd, so all branches of [T ]p are of Type I. Hence, by Theorem 5,

we have dim([T ]p) = η([T ]p) − η([T ]b). Since the number of tails in every branch in

[T ]p and in T are equal, then dim([T ]p) = dim(T ) by Theorem 4, and the assertion

follows.

Motivated by the observation that dim(K1,n) = η(K1,n) for every n ≥ 2, we are

interested in finding the graphs G with dim(G) = η(G). We give the formal statement

of this problem in Section 4. For trees, we have the following characterization as a

direct consequence of Theorem 5 and 6.

Proposition 1. Let T be a tree other than a path. Let BI and BII be the sets of Type
I and Type II branches in T , respectively. Let e1 and e2 be the number of odd and even
tails in T , respectively. Then, dim(T ) = η(T ) if and only if T satisfies one of the following
conditions:

1. e1 ≥ 1 and η(T − BI) = e2 − |BII|,

2. e1 = 0 and η(T ) = η([T ]p)− η([T ]b),

3. η(T ) = η([s(T )]p)− η([s(T )]b).

A homeomorphically irreducible tree, or HIT for short, is a tree with no vertex of

degree two. This structure was studied by Harary and Prins. Foregger [12] and

Haslegrave [17] used the term series-reduced tree to refer to an HIT. The property of

an HIT implies that all branches of an HIT T of order at least four are of Type I,

and all tails are odd. In fact, every tail in T is of length 1. Thus, deleting all Type

I branches in T is the same as deleting all of its pendant and quasipendant vertices.

Consequently, by Theorem 5 and Proposition 1, we obtain the following result.

Theorem 7. Let T be an HIT of order at least 4. Then, dim(T ) = η(T ) − η(T0) where
T0 is obtained from T by deleting all of its pendant and quasipendant vertices. Consequently,
dim(T ) = η(T ) if and only if η(T0) = 0.
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Moreover, it can be verified that for every HIT T of order n ∈ [4, 9], T0 = ∅. Hence,

dim(T ) = η(T ) for every HIT T of order n ∈ [4, 9].

We end this section by presenting the following theorem that gives a relationship

between the metric dimension of a tree and their L- and D-spectra.

Theorem 8. Let T be a tree. Let L and D be the Laplacian and distance matrix of
T , respectively, and let m∗L := max{mL(µ) : µ ∈ specL(G)} and m∗D := max{mD(∂) : ∂ ∈
specD(G)}. Then,

m∗L − ex(T ) + 1 ≤ dim(T ) ≤ mL(1)− ex(T ) + q(T )

and

m∗D − ex(T ) ≤ dim(T ) ≤ mD(−2)− ex(T ) + q(T ) + 1.

Proof. By Theorems 3 and 1, dim(T ) = p(T ) − ex(T ) = (p(T ) − 1) − k + 1 ≥
mL(µ)− ex(T ) + 1 for every µ ∈ specL(T ). Consequently, dim(T ) ≥ m∗L − ex(T ) + 1.

Furthermore, from Theorem 2, p(T )− q(T ) ≤ mL(1). Thus, we obtain

dim(T ) = p(T )− ex(T ) = (p(T )− q(T ))− ex(T ) + q(T ) ≤ mL(1)− ex(T ) + q(T ),

hence the first result. Next, by Theorem 3 and Corollary 1, dim(T ) = p(T )−ex(T ) ≥
mD(∂) − ex(T ) for every ∂ ∈ specD(T ). Consequently, dim(T ) ≥ m∗D − ex(T ).

Furthermore, from Corollary 2, p(T )− q(T )− 1 ≤ mD(−2). Thus, we obtain

dim(T ) = p(T )− ex(T )

= (p(T )− q(T )− 1)− ex(T ) + q(T ) + 1

≤ mD(−2)− ex(T ) + q(T ) + 1,

hence the second result.

3. Twin classes, nullity, and the metric dimension of graphs

In this section, we consider a connected graph G containing a twin class as defined in

the following paragraphs. We give a lower bound for the metric dimension of a graph

in terms of its twin classes and its nullity. First, we recall some definitions related to

twin classes of a graph.

Two distinct vertices u and v in a connected graph G = (V,E) are said to be twins

if d(u, x) = d(v, x) for every x ∈ V \ {u, v} [4]. In [2, 19, 24], twin vertices are

called distance similar. Other than distances, twin vertices may be defined using

their neighborhoods. Two distinct vertices u and v are said to be false twins if

NG(u) = NG(v) and true twins if NG[u] = NG[v]. We call two distinct vertices twins

if they are false twins or true twins. Note that false twins are not adjacent, while true
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twins are adjacent. It was proved by Saenpholphat and Zhang [24] that the definitions

of twin vertices using distances and neighborhoods are equivalent.

For two vertices u, v ∈ V , we define a relation ≡ on V where u ≡ v if and only if

u = v or u, v are twins. It was proved by Hernando et al. [18] and Saaenpholphat and

Zhang [24] that ≡ is an equivalence relation. Therefore, we may construct a partition

τ(G) of V consisting of equivalence classes over the relation ≡. We call τ(G) the twin

partition of G. These equivalence classes are called twin classes. Note that for a twin

class to contain twin vertices, it must be of size at least two; otherwise, it contains

only a single vertex, which is not a twin vertex by definition.

The concept of twin classes has a role in determining the vertices that must be con-

tained in every resolving set of a graph, and consequently, they give a lower bound to

the metric dimension of the graph, as shown in the following results.

Lemma 3 ([24]). If X is a twin class in a connected graph G with |X| = p ≥ 2, then
every resolving set of G contains at least p− 1 vertices in X.

Corollary 3 ([27]). If G is a connected graph, then dim(G) ≥
∑
τ∈τ(G)(|τ | − 1).

Recall that a set X ⊆ V (G) of a graph G is independent in G if no two vertices in X

are adjacent in G. The following lemma ensures that a twin class may only have one

of two forms: independent in G, or independent in G. We call a twin class false if it

is independent in G, and true if it is independent in G.

Lemma 4 ([18, 24]). If X is a twin class of a connected graph G, then either X is
false or true.

Before we discuss our main result, we give the following preliminary results. For a

matrix A, C (A) denotes the column space or range of A, that is, the vector space

spanned by the columns of A.

Lemma 5 ([22]). Let A ∈ Cm×n, B ∈ Cm×k, C ∈ Cl×n, O be the zero matrix, and 0
be the zero vector. Then, the following statements hold:

1. rank

[
A B
C O

]
≤ rank(A) + rank(B) + rank(C).

2. rank

[
A B
C O

]
= rank(A) + rank(B) + rank(C) if and only if C (A) ∩ C (B) = {0} and

C (A∗) ∩ C (C∗) = {0}.

Now, we investigate the spectral properties of a twin class of a connected graph, if it

exists, and their relation to the metric dimension of the graph. Let G be a connected

graph, and X ⊆ V (G) be a twin class in G with |X| ≥ 2. For the following discussions,

we define the sets XN and XC (depending on X) as follows. The set XN is defined as
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the common neighborhood of the vertices of X, that is, XN := N(v) for every v ∈ X,

and XC := V \ (X ∪XN ) (see Figure 5).

XC

XN

X

Figure 5. An example of a twin class X and the sets XN and XC

By giving the indices to the vertices in XC , XN , and X, in this order, we obtain the

adjacency matrix AG of G as follows:

AG =

 B C O

C∗ D J

O∗ J∗ E

 =

[
AG−X P

P∗ E

]
(3.1)

where O is the |XC | × |X| zero matrix, J is the |XN | × |X| all-ones matrix, and

P =

[
O

J

]
. This index ordering, which produces the block matrix in Equation 3.1,

will be used in the following results. Note that different twin classes may produce

different block matrices since the sets XN and XC may be different.

The following lemma gives a relation between the nullity of a graph and the nullity of

the subgraph obtained by deleting a twin class in the graph. For a positive integer n,

we denote by 0n and 1n the n× 1 vector, whose entries are all 0 and 1, respectively.

Lemma 6. Let G be a connected graph and X ⊆ V (G) be a false twin class with |X| ≥ 2.
Then, η(G) ≥ η(G−X) + |X| − 2. Furthermore, equality holds if and only if

C (AG−X) ∩ C

[
0|XC |
1|XN |

]
= {0|XC |+|XN |} (3.2)

where AG−X is the adjacency matrix of G−X according to Equation 3.1.

Proof. Let AG and AG−X be the adjacency matrix of G and G −X, respectively,

and let |V (G)| = n. Since X is false, every two vertices in X are not adjacent. So, in
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Equation 3.1, E = O|X| is an |X| × |X| zero matrix, and we have

AG =

[
AG−X P

P∗ O|X|

]
.

Consequently, by Lemma 5 (1), we have

rank(AG) ≤ rank(AG−X) + rank(P) + rank(P∗) = rank(AG−X) + 2

since rank(P) = 1. So, by the well-known rank-nullity theorem, we have

η(G) = n− rank(A)

≥ n− rank(AG−X)− 2

= (n− |X| − rank(AG−X)) + |X| − 2

= η(G−X) + |X| − 2.

Furthermore, since A is symmetric, AG−X = A∗G−X and
[
O J∗

]∗
=

[
O

J

]
. Addition-

ally, observe that C

[
O

J

]
= C

[
0|XC |
1|XN |

]
. Consequently, by Lemma 5 (2), the equality

holds if and only if C (AG−X)∩C

[
O

J

]
= C (AG−X)∩C

[
0|XC |
1|XN |

]
= {0|XC |+|XN |}.

Remark 1. To prove the condition C (AG−X)∩C

[
0|XC |
1|XN |

]
= {0|XC |+|XN |}, it is sufficient

to show that C (AG−X) ∩ C

[
0|XC |
1|XN |

]
⊆ {0|XC |+|XN |}, which is equivalent to show that:

if α

[
0|XC |
1|XN |

]
∈ C (AG−X) for some α ∈ C, then α = 0.

The following observation gives some sufficient conditions for a false twin class X to

satisfy Equation 3.2. We formally state the general problem in Section 4.

Observation 9. Let G be a connected graph and X be a false twin class in G with
|X| ≥ 2. Then, the Equation 3.2 holds if one of the following conditions holds:

1. there exists u ∈ XN such that NG(u) = X,

2. there exist u ∈ XN and v ∈ XC such that NG−X(u) = NG−X(v).

Proof. Let x = (0, . . . , 0, α, . . . , α) ∈ C (AG−X) with |XC | 0’s and |XN | α’s for some

α ∈ C, so there exists y such that AG−Xy = x. By Remark 1, it is sufficient to show

that α = 0. For a vector x, we denote the ith entry of x by [x]i. First, we assume that
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1 2 3 n− 1 n

n+ 1

n+ 2

n+ 3

n+ k − 1

n+ k

Figure 6. The graph G that satisfies the equality in Lemma 6 (when n is odd)

condition 1 holds. This means that u is an isolated vertex in G−X, so the uth row

of AG−X contains only zero entries. Since u ∈ XN , α = [x]u = [AG−Xy]u = 0. Next,

we assume that condition 2 holds. This means that the uth row and the vth row of

AG−X are identical, hence [AG−Xy]u = [AG−Xy]v. Since u ∈ XN and v ∈ XC , we

have α = [x]u = [AG−Xy]u = [AG−Xy]v = [x]v = 0.

As noted earlier, there are some possible conditions of a false twin class X satisfying

Equation 3.2 other than those mentioned in Observation 9. One of the examples is

the following.

Example 4. Consider the graph G shown in Figure 6 with an odd n and any k ≥ 2.
Observe that X = {n+ i : i ∈ [1, k]} ⊆ V (G) is a false twin class with |X| = k ≥ 2. We will
prove that η(G) = η(G−X) + |X| − 2 by showing that Equation 3.2 holds. From the twin

class X, we obtain XN = {n} and XC = [1, n− 1]. Thus, the vector

[
0|XC |
1|XN |

]
in this case is

(0, 0, . . . , 0, 1)∗ ∈ Cn. Observe that G−X = Pn−1 with adjacency matrix

AG−X =



0 1 0 0 · · · 0 0 0 0
1 0 1 0 · · · 0 0 0 0
0 1 0 1 · · · 0 0 0 0
...

...
...

...
...

...
...

...
0 0 0 0 · · · 1 0 1 0
0 0 0 0 · · · 0 1 0 1
0 0 0 0 · · · 0 0 1 0


.

We show that C (AG−X) ∩ C ((0, 0, · · · , 0, 1)∗) = {0n}. By Remark 1, it is sufficient
to show that if (0, 0, . . . , 0, α)∗ ∈ C (AG−X) for some α ∈ C, then α = 0. Now, let
(0, 0, . . . , 0, α)∗ ∈ C (AG−X) for some α ∈ C, so there exists y = (y1, y2, . . . , yn)∗ such
that AG−Xy = (0, 0, . . . , 0, α). So, we obtain the following equations (by considering only
the odd rows of AG−X):

y2 = 0, y2 + y4 = 0, y4 + y6 = 0, . . . , yn−3 + yn−1 = 0, and yn−1 = α,

which imply α = 0. Thus, Equation 3.2 holds, and by Lemma 6, η(G) = η(G−X) + |X|−2.
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Theorem 10. Let G be a connected graph, τ(G) be the twin partition of G, and

X =

{
X ∈ τ(G) : |X| ≥ 2, X is false,C (AG−X) ∩ C

[
0|XC |
1|XN |

]
= {0|XC |+|XN |}

}

where AG−X is the adjacency matrix of G−X according to Equation 3.1. Then,

dim(G) ≥ |X |(η(G) + 1)−
∑
X∈X

η(G−X).

Proof. Let X ∈X be arbitrary. Assume that the hypotheses are true, so by Lemma

6, we have |X| = η(G) + 2− η(G−X). Hence, by Lemma 3,

dim(G) ≥
∑

X∈X

(|X| − 1) = |X |(η(G) + 1)−
∑

X∈X

η(G−X).

Therefore, the proof is complete.

The bound in Theorem 10 is sharp, as shown in the following example.

Example 5. Consider the complete bipartite graph G = Km,n with partitions V1 and V2

where |V1| = m, |V2| = n, and m > n ≥ 2. It is well known that dim(G) = m + n − 2 and
η(G) = m+ n− 2. Now, observe that the twin partition of G is τ(G) = {V1, V2}. Since for
each X ∈ τ(G), there exists u ∈ XN = τ(G) \ X such that NG(u) = X, so Equation 3.2
holds by Observation 9 (1). Therefore, X = τ(G). Now, observe that G − V1 = Kn and
G− V2 = Km. Thus,

|X |(η(G) + 1)−
∑
X∈X

η(G−X) = (2)(m+ n− 2 + 1)− (η(Km) + η(Kn))

= 2(m+ n− 1)− (m+ n)

= m+ n− 2.

Therefore, dim(G) = |X |(η(G) + 1)−
∑
X∈X η(G−X).

Example 6. Recall the graph G in Figure 6 with twin class X = {n+ i : i ∈ [1, k]}. It is
clear that X is the only twin class of G that satisfies the hypotheses of Theorem 10, as we
have shown in Example 4, so X = {X}. Observe that η(G) = k − 1 and η(G−X) = 1, so
by Theorem 10, we have

dim(G) ≥ |X |(η(G) + 1)−
∑
X∈X

η(G−X) = (1)(k − 1 + 1)− 1 = k − 1.

Note that the exact value of the metric dimension of G is dim(G) = k.
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4. Some open problems

In this section, we propose some open problems related to our results. Our first

problem is the characterization of a graph G whose metric dimension and nullity are

equal. This will be very helpful since the calculation of the metric dimension of a

graph, which is NP-complete in general, is reduced to the calculation of its nullity.

Before we state our problem formally, let us recall the following definition. Let G

and H be graphs, where V (G) = {v1, v2, . . . , vn}. The corona product G �H is the

graph obtained by taking one copy of G and n copies of H and then joining by an

edge every vertex from the ith copy of H to vi.

Problem 1. Characterize graphs G satisfying dim(G) = η(G).

As we have mentioned before, some solutions for this problem are as follows:

1. G = K1,n for n ≥ 1,

2. G is an HIT of order n ∈ [3, 9],

3. G is a tree satisfying one of the conditions in Proposition 1, and

4. G = H �Km for any connected graph H and integer m ≥ 2.

The reader may verify the fourth solution. First, it was proved by Iswadi, Baskoro,

Simanjuntak, and Salman [19] that if H is a connected graph of order n and m ≥ 2,

then dim(H � Km) = n(m − 1). Furthermore, it is easy to verify, using Lemma 1,

that η(H �Km) = n(m− 1). Hence, dim(H �Km) = η(H �Km).

In Proposition 1, we have given an algebraic characterization for a tree T to satisfy

dim(T ) = η(T ). However, we are interested in finding the graph-structural properties

of a tree that satisfy these algebraic conditions. Hence, the following problem is

formulated.

Problem 2. Find the graph-structural properties of a tree T satisfying one of the three
conditions in Proposition 1.

Next, let us recall the hypotheses of Theorem 10, specifically Equation 3.2. As before,

we are interested in the graph-structural properties of a false twin class X in a graph

G satisfying Equation 3.2. We formally state the problem as follows.

Problem 3. Find the graph-structural properties of a false twin class X satisfying Equa-
tion 3.2.

We have shown that the graph G and twin class X in Example 4 (Figure 6) satisfy

Equation 3.2. We have also proved Observation 9 as a partial solution to this problem.
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Recall that the twin classes considered in Lemma 6, Observation 9, and Theorem

10 are false twin classes. However, the cases for true twin classes have not been

investigated yet; hence, the following problem is formulated.

Problem 4. Investigate the spectral properties of true twin classes and their relation to
the metric dimension of a graph.

Finally, recall that Theorem 8 uses the distance matrix to approximate the metric

dimension of a tree. Since the metric dimension of a graph is a distance-based concept

and distance matrix contains information on the distances in the graph, it is natural

to conjecture that there are relations between the properties of the distance matrix

of a graph and its metric dimension; hence, the following problem is posed.

Problem 5. Find another relationship between the distance matrix of a graph and its
metric dimension.

5. Conclusion

In this paper, we have initiated research on the relation between the metric dimension

of a graph and its spectral properties. We have found a relation between the metric

dimension of a tree other than a path and its nullity (Theorems 5 and 6), a relation

between the metric dimension of a tree and its L- and D-spectra (Theorem 8), and a

lower bound for the metric dimension of a general graph in terms of its twin classes

and its nullity (Theorem 10). Additionally, we have proposed a few open problems

that could serve as subjects for future study.
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