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Abstract: In this article, we introduce and study hyperbolic k-Mersenne and k-
Mersenne-Lucas spinors. First, we give hyperbolic k-Mersenne and k-Mersenne-Lucas
quaternions with some algebraic properties. Next we introduce the spinor family of
k-Mersenne and k-Mersenne-Lucas numbers using the hyperbolic k-Mersenne and k-
Mersenne-Lucas quaternions. Here, we start with Binet-type formulas and algebraic
properties such as Catalan’s identity, Cassini’s identity, d’Ocagne’s identity, etc. Ad-
ditionally, we obtain various types of generating functions. Moreover, we give partial
sum formulas in closed form.
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1. Introduction

Number sequences have been studied by researchers for a long time. One of these num-
bers are the Mersenne numbers, which is named after Marin Mersenne, a french Minim
friar who studied them in the early 17th century. Similar to the k-Fibonacci sequence
as defined by Falcén et al. [5] and other known k-sequences, recently Uslu, Deniz
[8] introduced and studied the k-Mersenne numbers as a generalization of Mersenne
numbers, and Mourad, Ali [3] investigated some properties of k-Mersenne-Lucas num-
bers. For n € N and k € R™, the k-Mersenne sequence is denoted by {Mg.n}nen
and the k-Mersenne-Lucas sequence is denoted by {my.n,}nen, respectively, by the
following recurrences.

My pyo = 3kMk,n+l —2Mj p,n >0 with Mygo=0,Mp;1 =1, (1.1)

Mppt2 = 3kMgpt1 — 2Mgp,n >0 with myg o =2, my 1 = 3k. (1.2)
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2 Hyperbolic k-Mersenne and k-Mersenne-Lucas Quaternions

Notice that, for £k = 1 in the above recurrences, the standard sequences of Mersenne

and Mersenne-Lucas numbers are obtained. The roots of the characteristic equation
2?2 —3kx+2=0 are o = kI8 VQ%LS and g = Sk=vOkZ_8 VQ%LB7 which satisfy the relations

a+B=3k, a—=+v9%2-8, af =2. (1.3)

The Binet formulas of the k-Mersenne and k-Mersenne-Lucas sequences are, respec-
tively, given by

an_Bn
My = —
k, a_p

The concept of quaternion was first introduced in 1843 by William Rowan Hamilton.

and my, =a" + " (1.4)

A quaternion with real coefficients is of the form ¢ = a + be; + ces + des, where
{1,e1,e9,e3} is the quaternion basis satisfying

2
=e5 = —1,e1e0 = —ege; = €3,€263 = —e3ey = €1, €367 = —e1e3 = ea. (1.5)

Like the quaternions, the set of hyperbolic quaternions forms a vector space over
the real numbers of dimension 4, which was described by Macfarlane [7]. Unlike the
ordinary quaternion, the hyperbolic quaternions are not associative, anti-commutative
also not an alternative algebra. A hyperbolic quaternion h has the form h = hyi; +
haio + hgiz + haig where {i1,i2,43,i4} are hyperbolic quaternion units, which adhere
to the rules

i3 =3 = i3 =igizig =1, i3 =1,

1354 = —1l4%93 = 12, {492 = —lg%q = 13, fl2i3 = —i3ly = i4. (1.6)

Consider an isotropic vector (x,y,2) € C?, where C? is the three-dimensional space
referred to a system of orthogonal coordinates. Then the vector (x,y, z) satisfy x2? +
y? + 22 = 0. Two numbers 7; and 7, can be associated with this vector as

z=ni—n3, y=imi+mn3), z=-2mn.

By solving the above equations, we get

T —1 —x —1
m = Iy / 5 Y and ngziq/Ty.

Thus, the spinor introduced by Cartan [1] can be defined as

n= {’“}. (1.7)

12

In 1984, Vivarelli [9] defined a linear and injective correspondence between the quater-
nions and spinors. Let the sets of quaternions and spinors be denoted as H and S,
respectively. Then the correspondence is defined as follows.



R. Mohanty, H. Mahato 3

Definition 1. Let ¢ : H — S be a correspondence between a quaternion q = a + be; +

cez + des € H and a spinor n = {Zl} € S. It is given by:
2

(1.8)

dti
¢(a+ bey + cea + des) = {bizﬂ =

Also, Vivarelli [9] has defined the correspondence between the products of two quater-
nions and a spinor product matrix given by

qp — —iQP, (1.9)

where P is the spinor corresponding to the quaternion p and Q is the complex, unitary,
square matrix defined as

d+ia b—ic
. 1.10
[b +ic —d+ ia} (1.10)
Spinor conjugate to 7 is defined by Elie Cartan [1] as
ii = i AT, (1.11)
. . 0 1
where 7] is the complex conjugate of 7 and A= | 1ol
Finally, the mate of spinor 1 introduced by Castillo [2] is
7= —A7. (1.12)

Recently, Ericsir and Gungor [4] introduced the Fibonacci spinors using Fibonacci
quaternions and studied their algebraic properties. Building on this, Kumari et al.
[6], generalized the concept of Fibonacci spinors by introducing k-Fibonacci and k-
Lucas spinors. Inspired by their work, this paper introduces and explores hyperbolic
k-Mersenne and k-Mersenne-Lucas spinors.

2. Hyperbolic k-Mersenne and k-Mersenne-Lucas quaternions

In this section, we introduce the hyperbolic k-Mersenne and k-Mersenne-Lucas quater-
nions and their properties with some identities.

Definition 2. For n > 0, the nth hyperbolic k-Mersenne and k-Mersenne-Lucas quater-
nions H M}, , and Hmy,, are defined, respectively, as

HMy n = Myt + Mg 192 + My ny2i3 + Mi nysia = (Min, Mint1, Mint2, Minys),

Hmypn = Minin + Mint1t2 + Mint2i3 + Mintsia = (Min, Mi,nt1, Mknt2, Mk nt3)-
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Definition 3. For n > 0, the conjugates of H My, ,, and Hmy,, are defined by
1. HMp,n = Mgt — Mk nt1t2 — My nt213 — Mg n43%4.

2. Hmp,n = Minit — M nt1t2 — M nt283 — Mi,n+3%4.

Definition 4. The norms of HMy , and Hmy, , are defined by
1. NHJ\/Ikm, = Mlg,n - Mlg,n+1 - Mlg,n+2 - Ml?,n-&-?)'

_ .2 2 2 2
2. NHmk,n =Mgp = Ment1 — Mg nt2 = Mg ny3-

Theorem 1. Forn > 0, the following recurrence relations for HMy, , and Hmy,, are
provided:

HMynss = 3kHMy i1 — 2HMjyn, (2.1)

with HMy. 0 = io + 3kis + (9k% — 2)ia, HMy,1 = i1 + 3kia + (9k? — 2)isz + (27k* — 12k)i4,
and

Hmk7n+2 = 3kak,n+l - 2Hmk,n. (2.2)

with Hmyo = 261 + 3kiz + (92 — 4)iz + (27k% — 18k)ia, Hmy, = 3kin + (9k? — 4)iz +
(27k3 — 18k)is + (81k* — 72k* + 8)i4.

Proof. It can be easily proved using Eqn.(1.1) and Definition 2. O

Theorem 2 (Binet’s formula). Forn >0, we have

ao” — Bp"

HMk,n: O[*ﬁ

and Hmy , = aa™ + 4",
where @ = i1taiz+a’is+a’is = (1,a,0%,0°), B =i1+pBia+B%s+B%4 = (1,8,5°,8°).
Proof.  Using Definition 2 and Eqn. (1.4), We have

HMj, = My pni1 + My ni192 + My nq2i3 + My nq3i4

at — " antl 5n+1 _ vt 5n+2 _ Q3 5n+3 _
= a—ﬂzl+ a_p 12 + a_p 13 + a_p 24
_a(iy + adg 4 a?iz + adiy) — (i1 4 Biz 4 B%is 4 5%i4)
a—p
aa — Bp"
- —ag

which completes the proof. The proof is similar for Hmy, . O]
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Corollary 1. For @ =i + aia + o?iz + o®is and B = i1 + Biz + iz + %4, we have
1. @B =15+ (58 — 3a)iz + (3a® — B?)is + (&® + 8% + 28 — 20)ia.
2. Ba =15+ (5a — 3B)iz + (38% — a®)iz + (a® + B2 4 2a — 2)ia.

Theorem 3 (Catalan’s identity). For any positive integers n, v such that n > r, we
have

2'"/77‘
9k2 — 8
+ (2" g2 — 12mk 2o + Mg 2ri2)is

HMy v HMy o — Hsz,n = [15(2T+1 — mp,2r) + (652" — Bk or11 + 6myg 2r—1)i2

r+1 .
+ (2" mr,3 — 8my 2r—3 — Mk 2043 — 2Mk 2r41 + 4mk,2r71)l4i|

and

Hmlc,n—erk,n+r — Hmi‘n = 2n+r |:15(mk727~ — 2T+1) -|- (5mk,2T+1 — 6mk,2T,1 —_ 2T6k)i2
+ (12mp,2r—2 — Mp 2r+2 + 27 (8 — 18k2))i3
+ (Mi,2r43 + 8Mp,2r—3 + 2Mp 2r41 — dMp 271

—ortl(o7k® — 18k:))i4].

Proof. For the first identity, using Theorem 2, we write
o — Bﬂnf’r aan«H" _ ﬂﬂn+r aa™ — Bﬁn 2
a—p )( a—p ) a < a—p )
1 _ _ _ _
— (a - ﬂ)2 (_aﬁanfrﬁnﬁ}»r _ 65Bn7roén+r + aﬁanﬁn + ﬂaﬂnan)

= (" (= 0T + e (1”67,

HM o HMy iy — HME,, = (

After some mathematical calculations, we get

HMp o HMy i — HME , = m(&ﬁ(zf — B + Ba(2" — a®n)).

Now using the corollary 1, we obtain

2"71—T [
9k2 — 8
+ (27 g g — 12mp 202 + My 212)i3

HMjp—r HMj i — HME,, = 15(27 7 —my o) + (6527 — Bmg 2r11 + 6mg 201 )ia

1 .
+ (2" My s — 803 — My 2rys — 2Mp 2p41 + 4My 0—1)ia).

The second identity follows analogously. O
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Here, we find the Cassini’s identity which is the special case of Catalan’s identity by
putting r = 1.

Corollary 2 (Cassini’s identity). Forn > 1, we have

2”71
HMy -1 HMy ns1 — HME,, = oz g5 - 9k?) — (135k> — 120k)iz

+ (81k* — 36k — 32)i3 — (243K — 324k> + 96k)i4)
and

Hmp oy Hmp ns1 — Hmi, ,, = 2" [15(9k% — 8) + (135k” — 120k)i2
— (81k* — 36k> — 32)i3 + (243k° — 324K 4 96k )ia).

Theorem 4 (d’Ocagne’s identity). Forn,t € N such that n > t, we have

HMj 41 HMpyy — HMp e HMy 1 = 2t[15Mk,n7t + (5Min—t41 — 6 M n—t—1)i2
+ (12Myn—t—2 — Mg n—t12)i3
+ (BkMyn—t12 — 4Mpn—t—1 + 8Mpy ¢ 3)i4]

and

Hmy i1 Hmygn — Hmg i Hmg n = 2t(9k2 —8)[—15Mpg -t + (6My n—t—1 — 5Mi n—t41)i2
+ (Mypn—t42 — 12Mi n—t—2)is3
+ (AMen—t—1 — 3kMpn—t42 — 8Mp n_t—3)ia].

Proof. The proof follows Binet fomulas with some mathematical calculations, re-
currence relations Theorem 1 and using corollary 1. O

Theorem 5 (Vajda’s identity). For any natural numbers n, i, j, we have

HMynyi HMp iy — HMpg o HMp pngi; = 2" My, [15Mk,j + (5Mg,j41 — 6 My j—1)i2
+ (12My,j—2 — My j42)i3
+ (Mg, j+3 + 8Mp, j—3 + 2My j41 — 4Mk,j—1)i4:|

and

HmkaHmk,nH — Hmk,nHmk,nHH = —Qn\/ 9k2 — SMk7i[15Mk7j
+ (5Mp jy1 — 6 My j—1)i2 + (12My j—2 — My j12)i3
+ (8Mg,j—3 + My jy3 4+ 2Mp j11 — 4My, j—1)ia).

Proof. Using Binet formulas and substituting the values of @8 and Ba@, we obtain
the required results. O
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Theorem 6. The generating functions for the H My ,, and Hmy ,, are

_tiy + o + (3k — 2t)i3 + (9K — 6kt — 2)i4

Gy (1) 1— 3kt + 202

and

(2 — 3kt)iy + (3k — 4t)ia + (9k% — 6kt — 4)iz + (27k> — 18>t — 18k + 8t)ia

Grm, () =
Hmin () 1 — 3kt + 212

Proof. Let Gum,,(t) = Yo o HMj ,t" be the ordinary generating function for
HMjy, .. Now consider the recurrence relation HMy, p 4o = 3kHMy, 5,11 — 2HMj, .
Then multiplying it by t"*2 and taking summation, we have

HMk7n+2 — 3]€HMk’n+1 + 2HMk,n =0

o oo (o)
= Y HMj o™ =3k > HMp pirt™ 2 + 2 HM ot™? =0

n=0 n=0 n=0
— (GHM;C‘" (t) — HMk70 — HMth) — 3kt(GHMk," (t) — HM)C70) + QtZGHMkm (t) =0
— GH]\/[k,n (t (1 — 3kt + 2t2) = HM]@() + (HMk’l — 3]€HMk,0)t

)
H M, HMg 1 — 3kHM; o)t
— G (1) = k.0 + (HMp 1 k,0)

1 — 3kt + 2t2
tiy + o + (3k — 2t)iz + (9k? — 6kt — 2)iy
=G t) = .
HM () 1 — 3kt + 262
The second part follows analogously. O

Theorem 7 (Exponential generating function). The ezponential generating func-
tions for the HMj, »n and Hmy n are

et _ Beﬁz

- and EHmk’n(t) = ae™ + Beﬁt,

Enwm,,, (t) =
where a =11 + iz + a2i3 +4 05314, B =141 + ﬂiz +4 ﬁ2i3 +4 5314.

Proof. Let

o0

g
EHMk‘n (t) = Z HMk,nE
n=0 ’

N

n=0
S S LS
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as required and the second part of the theorem is done analogously using Binet formula
for Hmy, . O

Theorem 8 (Finite Sum). For any positive integer n, we have

1

L 2o HMig = 30—

HMk,n_‘_l — QHMk’n — HMk70 + QHMk,_l).

2
9k2 4+ v9k? —8 — 10

2. 250 HMp25 = (H My, an 2 — 4HMj 00 — HMy o + 4H My, _5).

3. 3" HMy 2j1
AH My, ).

2
9k2+\/m_10(HMk,2n—2 — 4HMy on—a — HMio +

Proof. 1.

¢ " (@al B
> s =3 (%5=57)

_ 1 {a(a”“ DB -1) =B - 1)(a— 1)}
a5 @-DB-1)
(2.3)
After some mathematical calculation, we get
- 1
> HM;,; = W(HMM+1 —2HMjy, , — HMy, 0 + 2H My, ).
j=0
For second and third identity, the argument is similar. O

Theorem 9 (Finite Sum). For any positive integer n, we have

1

L 2o Himey = 53 (

Hmk7n+1 — 2Hmk7n — Hmk,() + 2Hmk,_1).

2

2. 3" Hmysoj =
Zismo s = G o =5 — 10

(Hmgont2 — 4Hmp,2n — Hmyg o +4Hmy, —2).

3. Z?:l Hmk,gj_l
4Hmk7_2).

(Hmi,on—2 — 4Hmpon—a — Hmio +

2
9k% + v/9k%2 —8—10

Proof. The argument is very similar to Theorem 8. O
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3. Hyperbolic k-Mersenne and k-Mersenne-Lucas Spinors

We start by defining the hyperbolic k-Mersenne and k-Mersenne-Lucas spinors, de-
noted as {HM S}, » }n>0 and {HmS}, , }n>0, respectively, using the spinor definition.
Following this, we evaluate their conjugates, mates, Binet-type formulas, generating
functions, and various algebraic identities.

We consider the correspondence defined on the sets of hyperbolic k-Mersenne and
k-Mersenne-Lucas quaternions denoted as HM and Hm, respectively, to the set of
spinors S. The correspondences are defined as

Yv:HM — S and ¢:Hm — S

‘ . . ‘ My s +iMp.
Y(Mpynin + My ny1ia + My nyois + My nysia) = [ knt8 Tk ] = HM Sk
My i1 + My o
(3.1)
and
. . . . m +m
Y(Mienit + Mg nt1i2 + Mg np2is + Mg ppsie) = { Rt T Tk ] = HmSp .
M nt+1 + UMk nt2
(3.2)

Note that these transformations are linear and injective but not surjective and hence
not bijective.
Now, if kan = Mynii — My pi1ia — My nqois — My ny3is, is the conjugate of
the hyperbolic quaternion HMj, ,,, then the k-hyperbolic Mersenne spinor H M Sz,n
corresponding to HMj, ,, is defined by
HMS;, = { ~Mionts + iMin ] :
’ ~ Mg 1 — 1My o

Similarly,

HmSZ _ —Mk n+3 + imk,n
,n y :
—Mgnt+1 — UMEgn42

Now, by the above defined transformation, we introduce a new family of spinors with
k-Mersenne and k-Mersenne-Lucas numbers.

Definition 5. For n > 0, the hyperbolic k-Mersenne and hyperbolic k-Mersenne-Lucas
spinor sequences { HM Sy »}n>0 and {HmSk » }n>0 are defined respctively, as

HMS o = 3kHM Sk n11 — 2HM Sy, (3.3)
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k> — 2
1+ 143k

(27k3 — 12k) 44

where HM Sk 0 = [ 3k + i(9k2 —2)

] and HM S, 1 = [ },and

HmSk,nH = 3kaSk’n+1 — 2HmS;m, (34)

27k® — 18k) + i2
3k 4 i(9k* — 4)

(81k* — 72k* + 8) + i3k

_|(
where HmSy,0 = { (9K* — 4) +i(27k® — 18k) |

} and HmS;1 = [

From the above recurrence relation, it can be noted that the characteristic equation
is the same as the k- Mersenne sequence, i.e. 2 — 3kxz + 2 = 0, and its roots, a and
B satisfy the following relations:

2 2
af=2 a+B=3k a-pB=+9k-8, %:% and é:%.
«

The complex conjugate of HM S}, ,, and HmS},, can be written as

T Ar o Mk n+3 *'LMkn T O Mg n+3 *imkn
HMS}, = Mo ARE and HmSy, = ’ L
k,n+1 — 1 k,n+2 mk,n—i—l - ka,n+2

Using Eqn. (1.11), we write for the spinor conjugate of HM Sy ,, and HmSy , as

. S Mo + iMy - n2 4 i
HAIS ) = i AT TSy { keyn+2 +? k, ,+1} and  HinSp, — {Mk 42+ imy, +1} .
' 7Mk,n - Z]L[k,nJrS —Mkn — UMEn43

Also, the mate of HM S}, , and HmSy, ,, as defined in Eqn. (1.12) is given by

HiSy, = —AFH ISy, — |:_]\/[k,n+1 + Z']ka,m—z} . and HmSp, = |:_mk‘,n+1 + ka,n+2:| '
' ]Wk,n+3 - ZMk.gn M n+3 — 1Mgn

Theorem 10 (Binet formula). Forn >0, we have

HMSk,n:L({O‘SH]a"— {5“1}[3")

9k2 — 8\ |a+ia® B+ ip?
A +i] W [BPHi]
and HmSk’"_{a—i—iaQ}a +[ﬁ+i,82}ﬂ’

Proof. By using the theory of difference equations, we can write
HMSy , =Ca™ +Dp". (3.5)

And we have, HMS,o = C + D = [9k2_2
’ ’ 1+43k

(27k% — 12k) + i

{3k+i(9k22)]'

} and HMS,, = Ca + D =
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After some necessary calculations, we get C

1 [53 +i

VOkZ —8 |8 +ip?
we obtain the first identity. The second identity can be proved using a similar ap-
proach. O

1 {aqui

Tor s a+ia2} and D =

]. Thus, substituting the values of C' and D in Eqn. (3.5),

Theorem 11 (Catalan’s identity). Forn, r € N, be such that n > r, we have

HMSo e HM Sy, gr — HMSy, o HM S

_ 20" [15(mkr — 271 +4(27 M 3 — 8k 2r—s — Mk 2043 — 2Mk 2041 + Ak 2r—1)
9k2 — 8 (12mp,20—2 — Mg 2042 — 27 P 2) + §(6k27 — 5k 2041 + 6mik20-1)

and
HmSkn—r HmSknsr — HmSkn HmSy,n

— gntr 1527 — myp00) + 3 (Mk2r43 + 8Mup2r—3 + 2Mk 21 — 4Mmkor—1 — 277127k — 18k))
(Mk2r42 — 12mp 202 — 27(8 — 18Kk%) + i(5mp 2041 — 6mp,20—1 — 276K) '

Proof. We have

N N -1
HM Sy HM St — HM St HM St = — (H My H Myt = HMico M)
. 2nr )
=928 [15(2T+1 — Mp,2r) + (6527 — 5myp 201 + 61 20 1)1z

+ (2"“77%3 — 12my 27—2 + My 2r4+2)03

1 .
+ (2" my 3 — 8mig 23 — Mg 2r43 — 2Mp2r41 + 4mk,2T71)24]

- 1
— 2n=r ( {(QH My 3 — 8Mp 2r—3 — Mp 2043 — 2ME 2741 + 4mk,2r71):|

k2 — 8 (6k2" — 5mp 2741 + 6Mmk 20—1)
) { (15274 = myg 2,)) } )

. 1
i(2" 'm0 — 12my 0 —o + Mg 2742)

_ 2" [15(mpgar — 27 +i(27 s — 8 2r—3 — Mk 2rs — 2Mpars + 4Mp20-1)
9k% — 8 (12mp 202 — M 2r 42 — 27T g 2) +0(6k2" — By or 41 + 6mg 2r—1)

Which completes the proof. Similarly, the second identity can be proved. O
We should note that the Catalan’s identity is a generalization of the Cassini’s identity.

So, using Theorem 11 and putting r = 1, we have the Cassini’s identity.

Corollary 3 (Cassini’s identity). Forn € N, we have

n—1 2 . 3 _ 5 _
HAM Sy HM Sy — HM Sy HMSp = — [15(% 8 + i(324k" ~ 243K — 96k )}

9k2 — 8 |(32 + 36k — 81k") +i(120k — 135K?)

and

o2 : 5 3
HinSy 1 HmSyms1 — HiSpn HmSyn = 2" {15(8 9k?) 4 4(243k° — 324K + 9614)} .

(81k* — 36Kk> — 32) + (135> — 120k)
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Theorem 12 (d’Ocagne’s identity). Forn, t € N such that n > t, we have

HMSy 1 HMSy,,, — HMS), {HM Sk 11

— ot —15Mpn—t + 1(3k My ru—t42 + 8 My n—t—3 — 4Mp n—t—1)
(Myn—t+2 — 12My n—t—2) + i(5Mgn—t+1 — 6 My n—t—1)

and

Hﬁsz,tHHmSk,n — HTAnSk,thSk,nJrl

15Mpn—t + i(AMppn—t—1 — 3kMp n—ty2 — 8Mpn—t—3) }

=2"(9k* — 8 :
( ) |:(12Mk,n7t72 — My n—ty2) + (6 My n—t—1 — 5My n—t+1)

Proof. We have

HMSy 1 1HMSy,,, — HM Sy (HM S 41

—1
= T(HMk,t-i-lHMk,n — HMy, ;HMp, 141)

1 '
= T[2t(15Mk,n—t + (5My p—t+1 — 6 My p—y—1)%2

+ (12Mp -2 — My n—t42)i3
+ (BkMpy—t4o + 8My pn—t—3 — 4 My p—1—1)i4)]

_ ot |:(3kMk,n—t+2 +8Mpyp—t—3 — AMp p—t—1) + i(15Mk,n—t):|
(5My p—t41 — 6 My p—s—1) +1(12My p—t—2 — My p—t42)

_ 2t l:_15Mk:,nt + i(ngk,n7t+2 + 8Mk,n—t—3 - 4Mk:,nt1):|
(M n—t42 — 12Mp p—t—2) + i(BMp n—141 — 6 Mg p—1—1)|

Analogously, the second identity follows. O
Theorem 13 (Vajda’s identity). Forn, i, j € N, we have

HMSy i HM Sk — HMS) n HM S it

—15M;,; + Z.(Mk7j+3 + 8My,j—3 + 2Mp j41 — 4Mk7j_1):|

=2"My ; .
h [ (M, j+2 — 12My j—2) + i(5Mp,j41 — 6 M, j-1)

and
H/'/:rLSk,n+iHmSk,n+j — HTAnSkamSk,nH_«_]-

n 15My; + i(4My j—1 — 2My j41 — M j43 — 8Mi j—3)
= 2"/9k? — 8Mj,, g d g A a=3)|
" { (12Mp,j—2 — Mk j12) + (6 My j—1 — 5Mk j41)
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Proof. We have

HMSy i i HM Sy j — HMS),  HM Sy it

1
= — (HMpp+i H Mg ey — HMyon H M ntie5)

_1 .
2" M [15Mk,j + (5Mp,j1 — 6 My j—1)iz

+ (12My j—2 — My j12)is

+ (My,j+3 + 8 My, j—3 + 2Mp j+1 — 4Mk,j71)i4}

VA |:(Mk,j+3 +8Mj j—3 + 2Mp j11 — 4Mpj1) + i15MkJ}

(OMp j41 — 6My. j—1) +i(12Mj, 2 — My j12)
—15M}, ; + Z'(M;g’jur?, + 8Mj j—3 + 2My j41 — 4Mk,j1):|

— 2" M, :
h { (Mp. jy2 — 12My, j2) +i(5Mj. j41 — 6 My j-1)

The same approach can be followed for the second identity. O

Theorem 14. The generating functions for HM Sy, and HmSy ,, are respectively, given
as

G ()_; (9K — 6kx — 2) + iz
HMSWE) = 0 " 8ke +242) | 1+i(3k — 22)
and
Crms (z) = 1 [(27k® — 18K’z — 18k + 8z) + i(2 — 3kx)
HmSW) = (1 3k + 222) (3k — 4z) + i(9k? — 6kx — 4) :

Proof. Let Guus(z) = Y00 o HMSi ™ be the ordinary generating function
for HM Sy ,. Now consider the recurrence relation HM Sy o = 3kHMSy ni1 —
2HM Sy, Then multiplying it by "2 and taking summation, we have

HMSk7n+2 . 3/€HMSk’n+1 + 2HMSk7n =0

o 0 -
— Z HMSk7n+2xn+2 — 3k Z HMSk,n+1xn+2 +2 Z HMSk,nZIJn+2 -0

n=0 n=0 n=0

= (Guwms,., (vr) = HM Sy o — HM Sy 12) — 3kx(Guwms,., (x) — HM S} o)

+22°Ghus, ., (2) =0
= Gpuwms,, (¥)(1 — 3k + 22%) = HM Sy o + (HM Sy — 3kHM S}, 0)x
_ HMSy o+ (HM Sy 1 — 3kHM Sy )z

1 — 3kz + 222

1 (9k? — 6kx — 2) + iz

(1 — 3k + 2x2) 1+i(3k — 2x)

= Guums,,, (7)

= Guums,,(r) =

The second part follows analogously. O
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For a sequence {a, }n>0, let G(z) = Y7 a,a™ be the ordinary generating function.
Then, for sequences {azy, }n>0 and {azn+1}n>0, the even and odd generating functions
are given by, respectively

G(z) + G(=Vx)

G, () = 5 and Ga,, () =

G(Vz) — G(—vz) (3.6)

Theorem 15. The ordinary generating functions of even and odd indexed for HM Sy »,
are respectively, given by

- 1 (9k* — 2 — 4z) + i3kx

and

GHMS,, 1 (T) 1 ( [3k(9k2 —dr —4) +i(l+ 2:5)] )

T 1+ 427 + 2(4 — 9K2) 3k + (9K — 4z — 2)

Theorem 16. The ordinary generating functions of even and odd indexed for HmSy »
are respectively, given by

GHmS,, (T) 1 ( {3k(9k2 — 4z —6) +i(2 + 4z — 9k2x)} )

T 1+ 422 + 2(4 — 9k2) 3k(1 — 22) + i(9k> — 8z — 4)

and

1 ( (8 — 72k? 4 16z — 36k>x + 81k*) 4 i(3k — 6kx) )
(4 — 9k2) '

Gomsznin (*) = T ey (9K — 8z — 4) + i(27k> — 18k — 12kx)

Theorem 17. The exponential generating functions for HM Sk, and HmSy, ., are
_ 1 053 + 74 ax 53 +7’ Bz
Enms(z) = o — % 8( {oc-i-ioﬁ} e — {5"’2'52 e )
and
043 +1 azx ﬂs +1 Bz
Erms (@) = ( {aﬂ‘az} et {5“‘52] ¢ )

Proof.  Let Egns(z) = >one, HMSkm% be the exponential generating function
for HM Sk, and then using Binet’s formula, we write

> 1 A +il BE+i] n\) 2"
EHMS<I>—;(\/W7_8(L+¢@2]“ ‘[5%62}5))71!

- S - PR )

n=0
- o= ( ol i e — Bt em)
T VK2 — 8\ |a+ia? B+ip? '

Similarly, the second identity can be proved using Binet’s formula of HmSj, . O




R. Mohanty, H. Mahato 15

Let E(z) = >0 0 @noy be the exponential generating function for a sequence
{an}n>0. Then the exponential generating functions for even and odd indexed terms
of the sequences {aan }n>0 and {azn+1}n>0, respectively, are

Eazn (1‘) — E(\/E) +2E(_\/E) and Ea2n+1 (ZII) — E(\/E) B E(_\/E) ) (37)

Theorem 18. The exponential generating functions of even and odd indexed for HM Sy »,
respectively, are

Eums,, (z) = WZ—S( [aa++ 2} cosh(av/z) — [ﬂﬁ++/32} COSh(ﬂ\f))

and Enus,, . (@) = m( [aa++a2} sinh(a/z) - [ffgz} sinh(BV/7)).

Theorem 19. The exponential generating functions of even and odd indexed for HmSk »
respectively, are

Brtmssn (@) = 3 ( [aa+ja2:| cosh(a/T) + [ﬁﬂ—k /32} cosh(B+/)
and  Errms,, . (z) = %( [aaﬁoﬁ} sinh(ay/z) + [BBJr A sinh(BvVz ))

Theorem 20 (Finite sum formulas).  For the hyperbolic k-Mersenne spinor se-
quence, we have

LS HMSe, = L (M s — 2My nys — 27k + 18k% + 12k — 4) + i(My ng1 — 2Mp,n — 1)
 2aj=1 P97 30D | (Minsa — 2Minst + 2 — 3k) + (M nts — 2Mpng2 + 2 + 6k — 9k?)

2. 320 HM Sk o5
o ((9%2 — 8) My 2013 — 4My 2011 — 81k* + 90Kk* — 12) + i( My 2042 — 4 My, 20, — 3k)
T 90D | (M onts — M ons1 + 6 — 9K2) + i((9K — 8) My, onto — 4My, on + 24k — 27k°)

3. 30 HM Sk 251
. ((9k% — 8) My 2n42 — 4My 2 — 24k — 27k%) + i(Mp,2n+3 + (5 — 95%) My 2041 — 3]
IR (My,2nt2 — 4My 20 — 3k) + i(My,2n+3 — 4Mp 2n+1 + 6 — 9K?)

Proof. 1. Using mathematical induction on n, let P(n) = Z?Zl HMS, j, then for
(27k% — 12k) + i
3k +1i(9k? — 2)
(3.3). Assume that the statement holds for some arbitrary positive integer ¢, i.e. ,

the initial value n = 1, P(1) is clearly true: HM Sy 1 = [ } from Eqn.

1 (M pya — 2My 143 — 273 + 18k% + 12k — 4) + i(Mj, 41 — 2Mpy — 1)}

HMS) ;= ——— .
]Z::l B9 3k — 1) | (Miays — 2Mppp1 + 2 — 3k) 4 i(Mypps — 2My 40 + 2 + 6k — 9K2)

Then, for n =t + 1, we have
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s 1 (Myt45 — 2Mg 144 — 27K + 18k + 12k — 4) + i(My 42 — 2Mp 141 — 1)

HMS, ; = .
; kg 3(1€ — 1) (Z\Jk,t#»ii — 21\1]&“,2 +2— 3](:) + Z(J\/[lc,t+4 — 2A{k,t+3 + 2+ 6k — 9k52)

Starting with the left-hand side of the statement for ¢ 4 1, wusing

the inductive hypothesis 22:1 HMS); and Eqn. (3.1), we can write
t+1 t

> HMSy ;=Y HMS;+ HMSy 141

j=1 j=1

1 {(MMH — 2Mpyys — 273 + 18K2 + 12k — 4) + i(My 441 — 2Mjy — 1)
T3k —1) | (Myays —2Mpppy + 2 — 3k) +i(Mysp3 — 2My o0 + 2 + 6k — 9k2)

I |:]ch,z+4 + iMk1t+1:|
My 440 + 1My 143

By simplifying the above equation, we obtain the required result. Therefore, by
mathematical induction, the statement is true. The second and third identities can
be derived in a similar manner. O

Theorem 21 (Finite sum formulas). For the hyperbolic k-Mersenne-Lucas spinor
sequence, we have

1. S HmSp, = -1 (Mknta — 2Mk nts — 812k“ + 54k + 7_21c2 — 36k — 8) + i(mk,n+13— 2mk,£,, —3k+4)]
j=1 I8 (M2 — 2mik g1 + 9k 4 6k +4) + i(Mings — 2mk g2 — 27k° + 18k% + 18k — 8)

(9K — 8)Mik,2n+3 — 4k 2nt1 — 243k° + 378k — 132k) + i(mi,2n+2 — 4mik,2n — k% + 12)]

n _ 1
2. Y HmSk 25 = 52— { (Mi,2n+3 — 4Mp 2ng1 — 27Tk + 30k) + i ((9K% — 8)mi 2nt2 — 4mi2n — 81k* + 99k? — 18)

3. Y HmSkaj-1 = i [

((9k% — 8)m 242 — 4my on — 81k* 4+ 108k* — 24) + i(mp 2n+3 + (5 — 9k?)mk 2nt1 + 3k)]
9(k2-1) .

(Mmk,2nt2 — 4mpg,2n — 9k? + 12) + i(mr,2n+3 — 4Mr 2041 — 27k + 30k)

Proof. The results are obtained using the mathematical induction on n, which is
very similar to Theorm 20. O

4. Conclusion

In this article, we present the hyperbolic k-Mersenne and k-Mersenne-Lucas quater-
nions and investigate their algebraic properties. Additionally, we introduce the
hyperbolic k-Mersenne and k-Mersenne-Lucas spinors by using the relationship
between spinors and hyperbolic quaternions. We also provide Binet-type formulas,
several identities, generating functions, etc.
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