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Abstract: In this article, we introduce and study hyperbolic k-Mersenne and k-

Mersenne-Lucas spinors. First, we give hyperbolic k-Mersenne and k-Mersenne-Lucas
quaternions with some algebraic properties. Next we introduce the spinor family of

k-Mersenne and k-Mersenne-Lucas numbers using the hyperbolic k-Mersenne and k-
Mersenne-Lucas quaternions. Here, we start with Binet-type formulas and algebraic

properties such as Catalan’s identity, Cassini’s identity, d’Ocagne’s identity, etc. Ad-

ditionally, we obtain various types of generating functions. Moreover, we give partial
sum formulas in closed form.
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1. Introduction

Number sequences have been studied by researchers for a long time. One of these num-

bers are the Mersenne numbers, which is named after Marin Mersenne, a french Minim

friar who studied them in the early 17th century. Similar to the k-Fibonacci sequence

as defined by Falcón et al. [5] and other known k-sequences, recently Uslu, Deniz

[8] introduced and studied the k-Mersenne numbers as a generalization of Mersenne

numbers, and Mourad, Ali [3] investigated some properties of k-Mersenne-Lucas num-

bers. For n ∈ N and k ∈ R+, the k-Mersenne sequence is denoted by {Mk,n}n∈N
and the k-Mersenne-Lucas sequence is denoted by {mk,n}n∈N , respectively, by the

following recurrences.

Mk,n+2 = 3kMk,n+1 − 2Mk,n, n ≥ 0 with Mk,0 = 0,Mk,1 = 1, (1.1)

mk,n+2 = 3kmk,n+1 − 2mk,n, n ≥ 0 with mk,0 = 2,mk,1 = 3k. (1.2)
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Notice that, for k = 1 in the above recurrences, the standard sequences of Mersenne

and Mersenne-Lucas numbers are obtained. The roots of the characteristic equation

x2 − 3kx+ 2 = 0 are α = 3k+
√
9k2−8
2 and β = 3k−

√
9k2−8
2 , which satisfy the relations

α+ β = 3k, α− β =
√

9k2 − 8, αβ = 2. (1.3)

The Binet formulas of the k-Mersenne and k-Mersenne-Lucas sequences are, respec-

tively, given by

Mk,n =
αn − βn

α− β
and mk,n = αn + βn. (1.4)

The concept of quaternion was first introduced in 1843 by William Rowan Hamilton.

A quaternion with real coefficients is of the form q = a + be1 + ce2 + de3, where

{1, e1, e2, e3} is the quaternion basis satisfying

e21 = e22 = e23 = −1, e1e2 = −e2e1 = e3, e2e3 = −e3e2 = e1, e3e1 = −e1e3 = e2. (1.5)

Like the quaternions, the set of hyperbolic quaternions forms a vector space over

the real numbers of dimension 4, which was described by Macfarlane [7]. Unlike the

ordinary quaternion, the hyperbolic quaternions are not associative, anti-commutative

also not an alternative algebra. A hyperbolic quaternion h has the form h = h1i1 +

h2i2 + h3i3 + h4i4 where {i1, i2, i3, i4} are hyperbolic quaternion units, which adhere

to the rules

i22 = i23 = i24 = i2i3i4 = 1, i1 = 1,

i3i4 = −i4i3 = i2, i4i2 = −i2i4 = i3, i2i3 = −i3i2 = i4. (1.6)

Consider an isotropic vector (x, y, z) ∈ C3, where C3 is the three-dimensional space

referred to a system of orthogonal coordinates. Then the vector (x, y, z) satisfy x2 +

y2 + z2 = 0. Two numbers η1 and η2 can be associated with this vector as

x = η21 − η22 , y = i(η21 + η22), z = −2η1η2.

By solving the above equations, we get

η1 = ±
√
x− iy

2
and η2 = ±

√
−x− iy

2
.

Thus, the spinor introduced by Cartan [1] can be defined as

η =

[
η1
η2

]
. (1.7)

In 1984, Vivarelli [9] defined a linear and injective correspondence between the quater-

nions and spinors. Let the sets of quaternions and spinors be denoted as H and S,

respectively. Then the correspondence is defined as follows.
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Definition 1. Let φ : H → S be a correspondence between a quaternion q = a + be1 +

ce2 + de3 ∈ H and a spinor η =

[
η1
η2

]
∈ S. It is given by:

φ(a+ be1 + ce2 + de3) =

[
d+ ia
b+ ic

]
≡ η. (1.8)

Also, Vivarelli [9] has defined the correspondence between the products of two quater-

nions and a spinor product matrix given by

qp→ −iQ̂P, (1.9)

where P is the spinor corresponding to the quaternion p and Q̂ is the complex, unitary,

square matrix defined as [
d+ ia b− ic
b+ ic −d+ ia

]
. (1.10)

Spinor conjugate to η is defined by Élie Cartan [1] as

η̃ = iAη, (1.11)

where η is the complex conjugate of η and A =

[
0 1

−1 0

]
.

Finally, the mate of spinor η introduced by Castillo [2] is

η̌ = −Aη. (1.12)

Recently, Ericsir and Gungor [4] introduced the Fibonacci spinors using Fibonacci

quaternions and studied their algebraic properties. Building on this, Kumari et al.

[6], generalized the concept of Fibonacci spinors by introducing k-Fibonacci and k-

Lucas spinors. Inspired by their work, this paper introduces and explores hyperbolic

k-Mersenne and k-Mersenne-Lucas spinors.

2. Hyperbolic k-Mersenne and k-Mersenne-Lucas quaternions

In this section, we introduce the hyperbolic k-Mersenne and k-Mersenne-Lucas quater-

nions and their properties with some identities.

Definition 2. For n ≥ 0, the nth hyperbolic k-Mersenne and k-Mersenne-Lucas quater-
nions HMk,n and Hmk,n are defined, respectively, as

HMk,n = Mk,ni1 +Mk,n+1i2 +Mk,n+2i3 +Mk,n+3i4 = (Mk,n,Mk,n+1,Mk,n+2,Mk,n+3),

Hmk,n = mk,ni1 +mk,n+1i2 +mk,n+2i3 +mk,n+3i4 = (mk,n,mk,n+1,mk,n+2,mk,n+3).
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Definition 3. For n ≥ 0, the conjugates of HMk,n and Hmk,n are defined by

1. HMk,n = Mk,ni1 −Mk,n+1i2 −Mk,n+2i3 −Mk,n+3i4.

2. Hmk,n = mk,ni1 −mk,n+1i2 −mk,n+2i3 −mk,n+3i4.

Definition 4. The norms of HMk,n and Hmk,n are defined by

1. NHMk,n = M2
k,n −M2

k,n+1 −M2
k,n+2 −M2

k,n+3.

2. NHmk,n = m2
k,n −m2

k,n+1 −m2
k,n+2 −m2

k,n+3.

Theorem 1. For n ≥ 0, the following recurrence relations for HMk,n and Hmk,n are
provided:

HMk,n+2 = 3kHMk,n+1 − 2HMk,n, (2.1)

with HMk,0 = i2 + 3ki3 + (9k2 − 2)i4, HMk,1 = i1 + 3ki2 + (9k2 − 2)i3 + (27k3 − 12k)i4,
and

Hmk,n+2 = 3kHmk,n+1 − 2Hmk,n. (2.2)

with Hmk,0 = 2i1 + 3ki2 + (9k2 − 4)i3 + (27k3 − 18k)i4, Hmk,1 = 3ki1 + (9k2 − 4)i2 +
(27k3 − 18k)i3 + (81k4 − 72k2 + 8)i4.

Proof. It can be easily proved using Eqn.(1.1) and Definition 2.

Theorem 2 (Binet’s formula). For n ≥ 0, we have

HMk,n =
ααn − ββn

α− β and Hmk,n = ααn + ββn,

where α = i1+αi2+α2i3+α3i4 = (1, α, α2, α3), β = i1+βi2+β2i3+β3i4 = (1, β, β2, β3).

Proof. Using Definition 2 and Eqn. (1.4), We have

HMk,n = Mk,ni1 +Mk,n+1i2 +Mk,n+2i3 +Mk,n+3i4

=
αn − βn

α− β
i1 +

αn+1 − βn+1

α− β
i2 +

αn+2 − βn+2

α− β
i3 +

αn+3 − βn+3

α− β
i4

=
αn(i1 + αi2 + α2i3 + α3i4)− βn(i1 + βi2 + β2i3 + β3i4)

α− β

=
ααn − ββn

α− β
,

which completes the proof. The proof is similar for Hmk,n.
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Corollary 1. For α = i1 + αi2 + α2i3 + α3i4 and β = i1 + βi2 + β2i3 + β3i4, we have

1. αβ = 15 + (5β − 3α)i2 + (3α2 − β2)i3 + (α3 + β3 + 2β − 2α)i4.

2. βα = 15 + (5α− 3β)i2 + (3β2 − α2)i3 + (α3 + β3 + 2α− 2β)i4.

Theorem 3 (Catalan’s identity). For any positive integers n, r such that n ≥ r, we
have

HMk,n−rHMk,n+r −HM2
k,n =

2n−r

9k2 − 8

[
15(2r+1 −mk,2r) + (6k2r − 5mk,2r+1 + 6mk,2r−1)i2

+ (2r+1mk,2 − 12mk,2r−2 +mk,2r+2)i3

+ (2r+1mk,3 − 8mk,2r−3 −mk,2r+3 − 2mk,2r+1 + 4mk,2r−1)i4
]

and

Hmk,n−rHmk,n+r −Hm2
k,n = 2n+r

[
15(mk,2r − 2r+1) + (5mk,2r+1 − 6mk,2r−1 − 2r6k)i2

+ (12mk,2r−2 −mk,2r+2 + 2r(8− 18k2))i3

+ (mk,2r+3 + 8mk,2r−3 + 2mk,2r+1 − 4mk,2r−1

− 2r+1(27k3 − 18k))i4
]
.

Proof. For the first identity, using Theorem 2, we write

HMk,n−rHMk,n+r −HM2
k,n =

(ααn−r − ββn−r
α− β

)(ααn+r − ββn+r
α− β

)
−
(ααn − ββn

α− β

)2
=

1

(α− β)2
(−αβαn−rβn+r − βαβn−rαn+r + αβαnβn + βαβnαn)

=
1

(α− β)2
(αβαnβn(1− α−rβr) + βααnβn(1− αrβ−r)).

After some mathematical calculations, we get

HMk,n−rHMk,n+r −HM2
k,n =

2n−r

9k2 − 8
(αβ(2r − β2r) + βα(2r − α2r)).

Now using the corollary 1, we obtain

HMk,n−rHMk,n+r −HM2
k,n =

2n−r

9k2 − 8

[
15(2r+1 −mk,2r) + (6k2r − 5mk,2r+1 + 6mk,2r−1)i2

+ (2r+1mk,2 − 12mk,2r−2 +mk,2r+2)i3

+ (2r+1mk,3 − 8mk,2r−3 −mk,2r+3 − 2mk,2r+1 + 4mk,2r−1)i4

]
.

The second identity follows analogously.
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Here, we find the Cassini’s identity which is the special case of Catalan’s identity by

putting r = 1.

Corollary 2 (Cassini’s identity). For n ≥ 1, we have

HMk,n−1HMk,n+1 −HM2
k,n =

2n−1

9k2 − 8
[15(8− 9k2)− (135k3 − 120k)i2

+ (81k4 − 36k2 − 32)i3 − (243k5 − 324k3 + 96k)i4]

and

Hmk,n−1Hmk,n+1 −Hm2
k,n = 2n+1[15(9k2 − 8) + (135k3 − 120k)i2

− (81k4 − 36k2 − 32)i3 + (243k5 − 324k3 + 96k)i4].

Theorem 4 (d’Ocagne’s identity). For n, t ∈ N such that n ≥ t, we have

HMk,t+1HMk,n −HMk,tHMk,n+1 = 2t[15Mk,n−t + (5Mk,n−t+1 − 6Mk,n−t−1)i2

+ (12Mk,n−t−2 −Mk,n−t+2)i3

+ (3kMk,n−t+2 − 4Mk,n−t−1 + 8Mk,n−t−3)i4]

and

Hmk,t+1Hmk,n −Hmk,tHmk,n+1 = 2t(9k2 − 8)[−15Mk,n−t + (6Mk,n−t−1 − 5Mk,n−t+1)i2

+ (Mk,n−t+2 − 12Mk,n−t−2)i3

+ (4Mk,n−t−1 − 3kMk,n−t+2 − 8Mk,n−t−3)i4].

Proof. The proof follows Binet fomulas with some mathematical calculations, re-

currence relations Theorem 1 and using corollary 1.

Theorem 5 (Vajda’s identity). For any natural numbers n, i, j, we have

HMk,n+iHMk,n+j −HMk,nHMk,n+i+j = 2nMk,i

[
15Mk,j + (5Mk,j+1 − 6Mk,j−1)i2

+ (12Mk,j−2 −Mk,j+2)i3

+ (Mk,j+3 + 8Mk,j−3 + 2Mk,j+1 − 4Mk,j−1)i4
]

and

Hmk,n+iHmk,n+j −Hmk,nHmk,n+i+j = −2n
√

9k2 − 8Mk,i[15Mk,j

+ (5Mk,j+1 − 6Mk,j−1)i2 + (12Mk,j−2 −Mk,j+2)i3

+ (8Mk,j−3 +Mk,j+3 + 2Mk,j+1 − 4Mk,j−1)i4].

Proof. Using Binet formulas and substituting the values of αβ and βα, we obtain

the required results.
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Theorem 6. The generating functions for the HMk,n and Hmk,n are

GHMk,n(t) =
ti1 + i2 + (3k − 2t)i3 + (9k2 − 6kt− 2)i4

1− 3kt+ 2t2

and

GHmk,n(t) =
(2− 3kt)i1 + (3k − 4t)i2 + (9k2 − 6kt− 4)i3 + (27k3 − 18k2t− 18k + 8t)i4

1− 3kt+ 2t2
.

Proof. Let GHMk,n
(t) =

∑∞
n=0HMk,nt

n be the ordinary generating function for

HMk,n. Now consider the recurrence relation HMk,n+2 = 3kHMk,n+1 − 2HMk,n.

Then multiplying it by tn+2 and taking summation, we have

HMk,n+2 − 3kHMk,n+1 + 2HMk,n = 0

=⇒
∞∑
n=0

HMk,n+2t
n+2 − 3k

∞∑
n=0

HMk,n+1t
n+2 + 2

∞∑
n=0

HMk,nt
n+2 = 0

=⇒ (GHMk,n
(t)−HMk,0 −HMk,1t)− 3kt(GHMk,n

(t)−HMk,0) + 2t2GHMk,n
(t) = 0

=⇒ GHMk,n
(t)(1− 3kt+ 2t2) = HMk,0 + (HMk,1 − 3kHMk,0)t

=⇒ GHMk,n
(t) =

HMk,0 + (HMk,1 − 3kHMk,0)t

1− 3kt+ 2t2

=⇒ GHMk,n
(t) =

ti1 + i2 + (3k − 2t)i3 + (9k2 − 6kt− 2)i4
1− 3kt+ 2t2

.

The second part follows analogously.

Theorem 7 (Exponential generating function). The exponential generating func-
tions for the HMk,n and Hmk,n are

EHMk,n(t) =
αeαt − βeβt

α− β and EHmk,n(t) = αeαt + βeβt,

where α = i1 + αi2 + α2i3 + α3i4, β = i1 + βi2 + β2i3 + β3i4.

Proof. Let

EHMk,n
(t) =

∞∑
n=0

HMk,n
tn

n!

=

∞∑
n=0

(ααn − ββn
α− β

) tn
n!

=
1

α− β

(
α

∞∑
n=0

(αt)n

n!
− β

∞∑
n=0

(βt)n

n!

)
=
αeαt − βeβt

α− β
,
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as required and the second part of the theorem is done analogously using Binet formula

for Hmk,n.

Theorem 8 (Finite Sum). For any positive integer n, we have

1.
∑n
j=0HMk,j =

1

3(k − 1)
(HMk,n+1 − 2HMk,n −HMk,0 + 2HMk,−1).

2.
∑n
j=0HMk,2j =

2

9k2 +
√

9k2 − 8− 10
(HMk,2n+2 − 4HMk,2n −HMk,0 + 4HMk,−2).

3.
∑n
j=1HMk,2j−1 =

2

9k2 +
√

9k2 − 8− 10
(HMk,2n−2 − 4HMk,2n−4 − HMk,0 +

4HMk,−2).

Proof. 1.

n∑
j=0

HMk,j =

n∑
j=0

(ααj − ββj
α− β

)
=

1

α− β

(
α

n∑
j=0

αj − β
n∑
j=0

βj
)

=
1

α− β

[
α
(αn+1 − 1

α− 1

)
− β

(βn+1 − 1

β − 1

)]
=

1

α− β

[α(αn+1 − 1)(β − 1)− β(βn+1 − 1)(α− 1)

(α− 1)(β − 1)

]
.

(2.3)

After some mathematical calculation, we get

n∑
j=0

HMk,j =
1

3(k − 1)
(HMk,n+1 − 2HMk,n −HMk,0 + 2HMk,−1).

For second and third identity, the argument is similar.

Theorem 9 (Finite Sum). For any positive integer n, we have

1.
∑n
j=0Hmk,j =

1

3(k − 1)
(Hmk,n+1 − 2Hmk,n −Hmk,0 + 2Hmk,−1).

2.
∑n
j=0Hmk,2j =

2

9k2 +
√

9k2 − 8− 10
(Hmk,2n+2 − 4Hmk,2n −Hmk,0 + 4Hmk,−2).

3.
∑n
j=1Hmk,2j−1 =

2

9k2 +
√

9k2 − 8− 10
(Hmk,2n−2 − 4Hmk,2n−4 − Hmk,0 +

4Hmk,−2).

Proof. The argument is very similar to Theorem 8.
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3. Hyperbolic k-Mersenne and k-Mersenne-Lucas Spinors

We start by defining the hyperbolic k-Mersenne and k-Mersenne-Lucas spinors, de-

noted as {HMSk,n}n≥0 and {HmSk,n}n≥0, respectively, using the spinor definition.

Following this, we evaluate their conjugates, mates, Binet-type formulas, generating

functions, and various algebraic identities.

We consider the correspondence defined on the sets of hyperbolic k-Mersenne and

k-Mersenne-Lucas quaternions denoted as HM and Hm, respectively, to the set of

spinors S. The correspondences are defined as

ψ : HM → S and ψ : Hm→ S

ψ(Mk,ni1 +Mk,n+1i2 +Mk,n+2i3 +Mk,n+3i4) =

[
Mk,n+3 + iMk,n

Mk,n+1 + iMk,n+2

]
≡ HMSk,n

(3.1)

and

ψ(mk,ni1 +mk,n+1i2 +mk,n+2i3 +mk,n+3i4) =

[
mk,n+3 + imk,n

mk,n+1 + imk,n+2

]
≡ HmSk,n.

(3.2)

Note that these transformations are linear and injective but not surjective and hence

not bijective.

Now, if HMk,n = Mk,ni1 − Mk,n+1i2 − Mk,n+2i3 − Mk,n+3i4, is the conjugate of

the hyperbolic quaternion HMk,n, then the k-hyperbolic Mersenne spinor HMS∗k,n
corresponding to HMk,n is defined by

HMS∗k,n =

[
−Mk,n+3 + iMk,n

−Mk,n+1 − iMk,n+2

]
.

Similarly,

HmS∗k,n =

[
−mk,n+3 + imk,n

−mk,n+1 − imk,n+2

]
.

Now, by the above defined transformation, we introduce a new family of spinors with

k-Mersenne and k-Mersenne-Lucas numbers.

Definition 5. For n ≥ 0, the hyperbolic k-Mersenne and hyperbolic k-Mersenne-Lucas
spinor sequences {HMSk,n}n≥0 and {HmSk,n}n≥0 are defined respctively, as

HMSk,n+2 = 3kHMSk,n+1 − 2HMSk,n, (3.3)
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where HMSk,0 =

[
9k2 − 2
1 + i3k

]
and HMSk,1 =

[
(27k3 − 12k) + i
3k + i(9k2 − 2)

]
, and

HmSk,n+2 = 3kHmSk,n+1 − 2HmSk,n, (3.4)

where HmSk,0 =

[
(27k3 − 18k) + i2
3k + i(9k2 − 4)

]
and HmSk,1 =

[
(81k4 − 72k2 + 8) + i3k

(9k2 − 4) + i(27k3 − 18k)

]
.

From the above recurrence relation, it can be noted that the characteristic equation

is the same as the k- Mersenne sequence, i.e. x2 − 3kx+ 2 = 0, and its roots, α and

β satisfy the following relations:

αβ = 2, α+ β = 3k, α− β =
√

9k2 − 8,
α

β
=
α2

2
and

β

α
=
β2

2
.

The complex conjugate of HMSk,n and HmSk,n can be written as

HMSk,n =

[
Mk,n+3 − iMk,n

Mk,n+1 − iMk,n+2

]
, and HmSk,n =

[
mk,n+3 − imk,n

mk,n+1 − imk,n+2

]
.

Using Eqn. (1.11), we write for the spinor conjugate of HMSk,n and HmSk,n as

˜HMSk,n = iAHMSk,n =

[
Mk,n+2 + iMk,n+1

−Mk,n − iMk,n+3

]
, and ˜HmSk,n =

[
mk,n+2 + imk,n+1

−mk,n − imk,n+3

]
.

Also, the mate of HMSk,n and HmSk,n as defined in Eqn. (1.12) is given by

ˇHMSk,n = −AHMSk,n =

[
−Mk,n+1 + iMk,n+2

Mk,n+3 − iMk,n

]
, and ˇHmSk,n =

[
−mk,n+1 + imk,n+2

mk,n+3 − imk,n

]
.

Theorem 10 (Binet formula). For n ≥ 0, we have

HMSk,n =
1√

9k2 − 8

([ α3 + i
α+ iα2

]
αn −

[
β3 + i
β + iβ2

]
βn
)

and HmSk,n =

[
α3 + i
α+ iα2

]
αn +

[
β3 + i
β + iβ2

]
βn.

Proof. By using the theory of difference equations, we can write

HMSk,n = Cαn +Dβn. (3.5)

And we have, HMSk,0 = C + D =

[
9k2 − 2

1 + i3k

]
and HMSk,1 = Cα + Dβ =[

(27k3 − 12k) + i

3k + i(9k2 − 2)

]
.
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After some necessary calculations, we get C =
1√

9k2 − 8

[
α3 + i

α+ iα2

]
and D =

− 1√
9k2 − 8

[
β3 + i

β + iβ2

]
. Thus, substituting the values of C and D in Eqn. (3.5),

we obtain the first identity. The second identity can be proved using a similar ap-

proach.

Theorem 11 (Catalan’s identity). For n, r ∈ N, be such that n ≥ r, we have

ˆHMSk,n−rHMSk,n+r − ˆHMSk,nHMSk,n

=
2n−r

9k2 − 8

[
15(mk,2r − 2r+1) + i(2r+1mk,3 − 8mk,2r−3 −mk,2r+3 − 2mk,2r+1 + 4mk,2r−1)

(12mk,2r−2 −mk,2r+2 − 2r+1mk,2) + i(6k2r − 5mk,2r+1 + 6mk,2r−1)

]
and

ˆHmSk,n−rHmSk,n+r − ˆHmSk,nHmSk,n

= 2n+r
[
15(2r+1 −mk,2r) + i(mk,2r+3 + 8mk,2r−3 + 2mk,2r+1 − 4mk,2r−1 − 2r+1(27k3 − 18k))

(mk,2r+2 − 12mk,2r−2 − 2r(8− 18k2) + i(5mk,2r+1 − 6mk,2r−1 − 2r6k)

]
.

Proof. We have

ˆHMSk,n−rHMSk,n+r − ˆHMSk,nHMSk,n =
−1

i
(HMk,n−rHMk,n+r −HMk,nHMk,n)

= i
2n−r

9k2 − 8

[
15(2r+1 −mk,2r) + (6k2r − 5mk,2r+1 + 6mk,2r−1)i2

+ (2r+1mk,2 − 12mk,2r−2 +mk,2r+2)i3

+ (2r+1mk,3 − 8mk,2r−3 −mk,2r+3 − 2mk,2r+1 + 4mk,2r−1)i4

]
= i

2n−r

9k2 − 8

([(2r+1mk,3 − 8mk,2r−3 −mk,2r+3 − 2mk,2r+1 + 4mk,2r−1)

(6k2r − 5mk,2r+1 + 6mk,2r−1)

]
+

[
i(15(2r+1 −mk,2r))

i(2r+1mk,2 − 12mk,2r−2 +mk,2r+2)

])
=

2n−r

9k2 − 8

[
15(mk,2r − 2r+1) + i(2r+1mk,3 − 8mk,2r−3 −mk,2r+3 − 2mk,2r+1 + 4mk,2r−1)

(12mk,2r−2 −mk,2r+2 − 2r+1mk,2) + i(6k2r − 5mk,2r+1 + 6mk,2r−1)

]
.

Which completes the proof. Similarly, the second identity can be proved.

We should note that the Catalan’s identity is a generalization of the Cassini’s identity.

So, using Theorem 11 and putting r = 1, we have the Cassini’s identity.

Corollary 3 (Cassini’s identity). For n ∈ N, we have

ˆHMSk,n−1HMSk,n+1 − ˆHMSk,nHMSk,n =
2n−1

9k2 − 8

[
15(9k2 − 8) + i(324k3 − 243k5 − 96k)
(32 + 36k2 − 81k4) + i(120k − 135k3)

]
and

ˆHmSk,n−1HmSk,n+1 − ˆHmSk,nHmSk,n = 2n+1

[
15(8− 9k2) + i(243k5 − 324k3 + 96k)
(81k4 − 36k2 − 32) + i(135k3 − 120k)

]
.
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Theorem 12 (d’Ocagne’s identity). For n, t ∈ N such that n ≥ t, we have

ˆHMSk,t+1HMSk,n − ˆHMSk,tHMSk,n+1

= 2t
[
−15Mk,n−t + i(3kMk,n−t+2 + 8Mk,n−t−3 − 4Mk,n−t−1)
(Mk,n−t+2 − 12Mk,n−t−2) + i(5Mk,n−t+1 − 6Mk,n−t−1)

]

and

ˆHmSk,t+1HmSk,n − ˆHmSk,tHmSk,n+1

= 2t(9k2 − 8)

[
15Mk,n−t + i(4Mk,n−t−1 − 3kMk,n−t+2 − 8Mk,n−t−3)

(12Mk,n−t−2 −Mk,n−t+2) + i(6Mk,n−t−1 − 5Mk,n−t+1)

]
.

Proof. We have

ˆHMSk,t+1HMSk,n − ˆHMSk,tHMSk,n+1

=
−1

i
(HMk,t+1HMk,n −HMk,tHMk,n+1)

=
−1

i
[2t(15Mk,n−t + (5Mk,n−t+1 − 6Mk,n−t−1)i2

+ (12Mk,n−t−2 −Mk,n−t+2)i3

+ (3kMk,n−t+2 + 8Mk,n−t−3 − 4Mk,n−t−1)i4)]

= 2ti

[
(3kMk,n−t+2 + 8Mk,n−t−3 − 4Mk,n−t−1) + i(15Mk,n−t)

(5Mk,n−t+1 − 6Mk,n−t−1) + i(12Mk,n−t−2 −Mk,n−t+2)

]
= 2t

[
−15Mk,n−t + i(3kMk,n−t+2 + 8Mk,n−t−3 − 4Mk,n−t−1)

(Mk,n−t+2 − 12Mk,n−t−2) + i(5Mk,n−t+1 − 6Mk,n−t−1)

]
.

Analogously, the second identity follows.

Theorem 13 (Vajda’s identity). For n, i, j ∈ N, we have

ˆHMSk,n+iHMSk,n+j − ˆHMSk,nHMSk,n+i+j

= 2nMk,i

[
−15Mk,j + i(Mk,j+3 + 8Mk,j−3 + 2Mk,j+1 − 4Mk,j−1)

(Mk,j+2 − 12Mk,j−2) + i(5Mk,j+1 − 6Mk,j−1)

]

and

ˆHmSk,n+iHmSk,n+j − ˆHmSk,nHmSk,n+i+j

= 2n
√

9k2 − 8Mk,i

[
15Mk,j + i(4Mk,j−1 − 2Mk,j+1 −Mk,j+3 − 8Mk,j−3)

(12Mk,j−2 −Mk,j+2) + i(6Mk,j−1 − 5Mk,j+1)

]
.
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Proof. We have

ˆHMSk,n+iHMSk,n+j − ˆHMSk,nHMSk,n+i+j

=
−1

i
(HMk,n+iHMk,n+j −HMk,nHMk,n+i+j)

=
−1

i
2nMk,i

[
15Mk,j + (5Mk,j+1 − 6Mk,j−1)i2

+ (12Mk,j−2 −Mk,j+2)i3

+ (Mk,j+3 + 8Mk,j−3 + 2Mk,j+1 − 4Mk,j−1)i4

]
= 2nMk,ii

[
(Mk,j+3 + 8Mk,j−3 + 2Mk,j+1 − 4Mk,j−1) + i15Mk,j

(5Mk,j+1 − 6Mk,j−1) + i(12Mk,j−2 −Mk,j+2)

]
= 2nMk,i

[
−15Mk,j + i(Mk,j+3 + 8Mk,j−3 + 2Mk,j+1 − 4Mk,j−1)

(Mk,j+2 − 12Mk,j−2) + i(5Mk,j+1 − 6Mk,j−1)

]
.

The same approach can be followed for the second identity.

Theorem 14. The generating functions for HMSk,n and HmSk,n are respectively, given
as

GHMS(x) =
1

(1− 3kx+ 2x2)

[
(9k2 − 6kx− 2) + ix

1 + i(3k − 2x)

]
and

GHmS(x) =
1

(1− 3kx+ 2x2)

[
(27k3 − 18k2x− 18k + 8x) + i(2− 3kx)

(3k − 4x) + i(9k2 − 6kx− 4)

]
.

Proof. Let GHMS(x) =
∑∞
n=0HMSk,nx

n be the ordinary generating function

for HMSk,n. Now consider the recurrence relation HMSk,n+2 = 3kHMSk,n+1 −
2HMSk,n. Then multiplying it by xn+2 and taking summation, we have

HMSk,n+2 − 3kHMSk,n+1 + 2HMSk,n = 0

=⇒
∞∑
n=0

HMSk,n+2x
n+2 − 3k

∞∑
n=0

HMSk,n+1x
n+2 + 2

∞∑
n=0

HMSk,nx
n+2 = 0

=⇒ (GHMSk,n
(x)−HMSk,0 −HMSk,1x)− 3kx(GHMSk,n

(x)−HMSk,0)

+ 2x2GHMSk,n
(x) = 0

=⇒ GHMSk,n
(x)(1− 3kx+ 2x2) = HMSk,0 + (HMSk,1 − 3kHMSk,0)x

=⇒ GHMSk,n
(x) =

HMSk,0 + (HMSk,1 − 3kHMSk,0)x

1− 3kx+ 2x2

=⇒ GHMSk,n
(x) =

1

(1− 3kx+ 2x2)

[
(9k2 − 6kx− 2) + ix

1 + i(3k − 2x)

]
.

The second part follows analogously.
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For a sequence {an}n≥0, let G(x) =
∑∞
n=0 anx

n be the ordinary generating function.

Then, for sequences {a2n}n≥0 and {a2n+1}n≥0, the even and odd generating functions

are given by, respectively

Ga2n(x) =
G(
√
x) +G(−

√
x)

2
and Ga2n+1

(x) =
G(
√
x)−G(−

√
x)

2
√
x

. (3.6)

Theorem 15. The ordinary generating functions of even and odd indexed for HMSk,n
are respectively, given by

GHMS2n(x) =
1

1 + 4x2 + x(4− 9k2)

([(9k2 − 2− 4x) + i3kx
(1 + 2x) + i3k

])
and

GHMS2n+1(x) =
1

1 + 4x2 + x(4− 9k2)

([3k(9k2 − 4x− 4) + i(1 + 2x)
3k + i(9k2 − 4x− 2)

])
.

Theorem 16. The ordinary generating functions of even and odd indexed for HmSk,n
are respectively, given by

GHmS2n(x) =
1

1 + 4x2 + x(4− 9k2)

([3k(9k2 − 4x− 6) + i(2 + 4x− 9k2x)
3k(1− 2x) + i(9k2 − 8x− 4)

])
and

GHmS2n+1(x) =
1

1 + 4x2 + x(4− 9k2)

([(8− 72k2 + 16x− 36k2x+ 81k4) + i(3k − 6kx)
(9k2 − 8x− 4) + i(27k3 − 18k − 12kx)

])
.

Theorem 17. The exponential generating functions for HMSk,n and HmSk,n are

EHMS(x) =
1√

9k2 − 8

([ α3 + i
α+ iα2

]
eαx −

[
β3 + i
β + iβ2

]
eβx
)

and

EHmS(x) =
([ α3 + i
α+ iα2

]
eαx +

[
β3 + i
β + iβ2

]
eβx
)
.

Proof. Let EHMS(x) =
∑∞
n=0HMSk,n

xn

n! be the exponential generating function

for HMSk,n, and then using Binet’s formula, we write

EHMS(x) =

∞∑
n=0

( 1√
9k2 − 8

([ α3 + i

α+ iα2

]
αn −

[
β3 + i

β + iβ2

]
βn
))xn

n!

=
1√

9k2 − 8

([ α3 + i

α+ iα2

] ∞∑
n=0

(αx)n

n!
−
[
β3 + i

β + iβ2

] ∞∑
n=0

(βx)n

n!

)
=

1√
9k2 − 8

([ α3 + i

α+ iα2

]
eαx −

[
β3 + i

β + iβ2

]
eβx
)
.

Similarly, the second identity can be proved using Binet’s formula of HmSk,n.
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Let E(x) =
∑∞
n=0 an

xn

n! be the exponential generating function for a sequence

{an}n≥0. Then the exponential generating functions for even and odd indexed terms

of the sequences {a2n}n≥0 and {a2n+1}n≥0, respectively, are

Ea2n(x) =
E(
√
x) + E(−

√
x)

2
and Ea2n+1

(x) =
E(
√
x)− E(−

√
x)

2
√
x

. (3.7)

Theorem 18. The exponential generating functions of even and odd indexed for HMSk,n
respectively, are

EHMS2n(x) =
1

2
√

9k2 − 8

([ α3 + i
α+ iα2

]
cosh(α

√
x)−

[
β3 + i
β + iβ2

]
cosh(β

√
x)
)

and EHMS2n+1(x) =
1

2
√
x(9k2 − 8)

([ α3 + i
α+ iα2

]
sinh(α

√
x)−

[
β3 + i
β + iβ2

]
sinh(β

√
x)
)
.

Theorem 19. The exponential generating functions of even and odd indexed for HmSk,n
respectively, are

EHmS2n(x) =
1

2

([ α3 + i
α+ iα2

]
cosh(α

√
x) +

[
β3 + i
β + iβ2

]
cosh(β

√
x)
)

and EHmS2n+1(x) =
1

2

([ α3 + i
α+ iα2

]
sinh(α

√
x) +

[
β3 + i
β + iβ2

]
sinh(β

√
x)
)
.

Theorem 20 (Finite sum formulas). For the hyperbolic k-Mersenne spinor se-
quence, we have

1.
∑n
j=1HMSk,j = 1

3(k−1)

[
(Mk,n+4 − 2Mk,n+3 − 27k3 + 18k2 + 12k − 4) + i(Mk,n+1 − 2Mk,n − 1)
(Mk,n+2 − 2Mk,n+1 + 2− 3k) + i(Mk,n+3 − 2Mk,n+2 + 2 + 6k − 9k2)

]
.

2.
∑n
j=1HMSk,2j

= 1
9(k2−1)

[
((9k2 − 8)Mk,2n+3 − 4Mk,2n+1 − 81k4 + 90k2 − 12) + i(Mk,2n+2 − 4Mk,2n − 3k)
(Mk,2n+3 − 4Mk,2n+1 + 6− 9k2) + i((9k2 − 8)Mk,2n+2 − 4Mk,2n + 24k − 27k3)

]
.

3.
∑n
j=1HMSk,2j−1

= 1
9(k2−1)

[
((9k2 − 8)Mk,2n+2 − 4Mk,2n − 24k − 27k3) + i(Mk,2n+3 + (5− 9k2)Mk,2n+1 − 3)

(Mk,2n+2 − 4Mk,2n − 3k) + i(Mk,2n+3 − 4Mk,2n+1 + 6− 9k2)

]
.

Proof. 1. Using mathematical induction on n, let P (n) =
∑n
j=1HMSk,j , then for

the initial value n = 1, P (1) is clearly true: HMSk,1 =

[
(27k3 − 12k) + i

3k + i(9k2 − 2)

]
from Eqn.

(3.3). Assume that the statement holds for some arbitrary positive integer t, i.e. ,

t∑
j=1

HMSk,j =
1

3(k − 1)

[
(Mk,t+4 − 2Mk,t+3 − 27k3 + 18k2 + 12k − 4) + i(Mk,t+1 − 2Mk,t − 1)

(Mk,t+2 − 2Mk,t+1 + 2− 3k) + i(Mk,t+3 − 2Mk,t+2 + 2 + 6k − 9k2)

]
.

Then, for n = t+ 1, we have
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t+1∑
j=1

HMSk,j =
1

3(k − 1)

[
(Mk,t+5 − 2Mk,t+4 − 27k3 + 18k2 + 12k − 4) + i(Mk,t+2 − 2Mk,t+1 − 1)

(Mk,t+3 − 2Mk,t+2 + 2− 3k) + i(Mk,t+4 − 2Mk,t+3 + 2 + 6k − 9k2)

]
.

Starting with the left-hand side of the statement for t + 1, using

the inductive hypothesis
∑t
j=1HMSk,j and Eqn. (3.1), we can write

t+1∑
j=1

HMSk,j =
t∑

j=1

HMSk,j +HMSk,t+1

=
1

3(k − 1)

[
(Mk,t+4 − 2Mk,t+3 − 27k3 + 18k2 + 12k − 4) + i(Mk,t+1 − 2Mk,t − 1)

(Mk,t+2 − 2Mk,t+1 + 2− 3k) + i(Mk,t+3 − 2Mk,t+2 + 2 + 6k − 9k2)

]
+

[
Mk,t+4 + iMk,t+1

Mk,t+2 + iMk,t+3

]
.

By simplifying the above equation, we obtain the required result. Therefore, by

mathematical induction, the statement is true. The second and third identities can

be derived in a similar manner.

Theorem 21 (Finite sum formulas). For the hyperbolic k-Mersenne-Lucas spinor
sequence, we have

1.
∑n
j=1HmSk,j = 1

3(k−1)

[
(mk,n+4 − 2mk,n+3 − 81k4 + 54k3 + 72k2 − 36k − 8) + i(mk,n+1 − 2mk,n − 3k + 4)
(mk,n+2 − 2mk,n+1 + 9k2 + 6k + 4) + i(mk,n+3 − 2mk,n+2 − 27k3 + 18k2 + 18k − 8)

]
.

2.
∑n
j=1HmSk,2j = 1

9(k2−1)

[
((9k2 − 8)mk,2n+3 − 4mk,2n+1 − 243k5 + 378k3 − 132k) + i(mk,2n+2 − 4mk,2n − 9k2 + 12)
(mk,2n+3 − 4mk,2n+1 − 27k3 + 30k) + i((9k2 − 8)mk,2n+2 − 4mk,2n − 81k4 + 99k2 − 18)

]
.

3.
∑n
j=1HmSk,2j−1 = 1

9(k2−1)

[
((9k2 − 8)mk,2n+2 − 4mk,2n − 81k4 + 108k2 − 24) + i(mk,2n+3 + (5− 9k2)mk,2n+1 + 3k)

(mk,2n+2 − 4mk,2n − 9k2 + 12) + i(mk,2n+3 − 4mk,2n+1 − 27k3 + 30k)

]
.

Proof. The results are obtained using the mathematical induction on n, which is

very similar to Theorm 20.

4. Conclusion

In this article, we present the hyperbolic k-Mersenne and k-Mersenne-Lucas quater-

nions and investigate their algebraic properties. Additionally, we introduce the

hyperbolic k-Mersenne and k-Mersenne-Lucas spinors by using the relationship

between spinors and hyperbolic quaternions. We also provide Binet-type formulas,

several identities, generating functions, etc.

Conflict of Interest: The authors declare that they have no conflict of interest.

Data Availability: Data sharing is not applicable to this article as no datasets were

generated or analyzed during the current study.



R. Mohanty, H. Mahato 17

References
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