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Abstract: Let G be a finite group. The power graph P(G) of G is the simple

undirected graph with group elements as a vertex set and two elements are adjacent if
one of them is a power of the other. The order supergraph S(G) of the power graph

P(G) is the simple undirected graph with vertex set G in which two vertices x and y

are adjacent if o(x)|o(y) or o(y)|o(x). In this paper, we classify all the finite groups G
such that the order supergraph S(G) is the line graph of some graph. Moreover, we

characterize finite groups whose order supergraphs are the complement of line graphs.
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1. Introduction

The study of inter relationships between graphs and algebraic structures, viz: groups,

rings, vector spaces etc; is a broad research area of algebraic graph theory. Various re-

searcher studied the graphs associated with groups as they have enormous applications

in the area of mathematics and automata theory (see [11–13]). In literature, there are

various graphs associated with groups, e.g. Cayley graphs, commuting graphs, power

graphs, prime graphs etc.. The concept of the directed power graph was introduced

in [14]. The power graph P(G) of a group G is the simple undirected graph whose

vertex set is the corresponding set of G and two vertices a and b are adjacent if one
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is a power of the other or equivalently: either a ∈ 〈b〉 or b ∈ 〈a〉. In [4], the author

determined that the power graphs of two finite groups are isomorphic if they have the

same number of elements of each order. Later, Cameron et. al [5] proved that for

finite abelian groups G1 and G2, P(G1) ∼= P(G2) if and only if G1
∼= G2. A graph

Γ is said to be Γ′-free if it contains no induced subgraph, which is isomorphic to Γ′.

In [6], Doostabadi et. al classified all the finite groups with K1,3-free, K1,4-free or

C4-free power graphs. In [18], the authors studied certain forbidden subgraphs such

as split, threshold, chordal and cograph of the power graphs of finite groups. For a

detailed list of results and open problems on power graphs, we refer the reader to [16]

and references therein.

The order supergraph S(G) of the power graph is the simple undirected graph whose

vertex set is G and two vertices x, y ∈ G are adjacent if o(x)|o(y) or o(y)|o(x). The

power graph P(G) of a finite group G is a spanning subgraph of S(G). Hamzeh and

Ashrafi [8] studied the automorphism groups of order supergraphs of certain finite

groups. Further, in [9] they studied the relation between certain properties of the

power graph and the order supergraph. Some essential properties of S(G) including

Hamiltonianity, Eulerianness and 2-connectedness have been studied in [10]. Ma et al.

[17] studied the independence number of the order supergraph. Also, they obtained a

necessary and sufficient condition for the independence number of S(G) to be equal to

the number of distinct prime divisors of the order of G. Asboi et al. [15] showed that a

group is isomorphic to some simple groups, namely sporadic simple groups, PSL(2, p),

PGL(2, p) if and only if their corresponding order supergraphs are isomorphic.

The line graph L(Γ) of the graph Γ is the graph whose vertex set is all the edges of Γ

and two vertices of L(Γ) are adjacent if they are incident in Γ. Bera [3] characterized

all the finite nilpotent groups whose power graphs and proper power graphs are line

graphs. In [19], the authors have been classified all the finite groups whose enhanced

power graphs are line graphs. Moreover, all finite nilpotent groups whose proper

enhanced power graphs are line graphs of some graphs are determined in [19]. In this

paper, we aim to study the line graphs of order super power graphs associated to

finite groups. The graphs S∗(G) and S∗∗(G) are the subgraphs of S(G) obtained by

deleting the identity element ofG and all the dominating vertices of S(G), respectively.

We characterize all the finite group G such that ∆(G) ∈ {S(G),S∗(G),S∗∗(G)} is

a line graph of some graph. Also, we classify all finite groups G such that ∆(G) ∈
{S(G),S∗(G),S∗∗(G)} is the complement of a line graph.

2. Preliminaries

A graph Γ consists of an ordered pair of the vertex set V (Γ) and the edge set E(Γ) ⊆
V (Γ) × V (Γ), in which two vertices u and v are adjacent if {u, v} ∈ E(Γ). If u is

adjacent to v, then we denote it by u ∼ v. Otherwise, u � v. If {u, v} ∈ E(Γ), then

the vertices u and v are called endpoints of the edge {u, v}. Two edges e1 and e2 are

called incident edges if they have a common endpoint. An edge e is called a loop if

both the endpoints of e are the same. A graph is called a simple graph if it does not



M. Manisha, et al. 3

contain any loop or multiple edges. We consider only simple graphs throughout the

paper.

A graph Γ is said to be an empty graph if the vertex set V (Γ) is empty. A subgraph Γ′

of a graph Γ is a graph such that V (Γ′) ⊆ V (Γ) and E(Γ′) ⊆ E(Γ). A spanning

subgraph Γ′ of a graph Γ is a subgraph of Γ such that V (Γ′) = V (Γ). Let X ⊆ V (Γ).

Then the subgraph Γ′ induced by the set X is a graph such that V (Γ′) = X and

u, v ∈ X are adjacent if and only if they are adjacent in Γ. If a vertex u of a graph

Γ is adjacent to all other vertices of Γ then u is called a dominating vertex of Γ. By

Dom(Γ), we mean the set of all dominating vertices of Γ. A graph Γ is said to be

complete if each pair of distinct vertices is adjacent. The complete graph of n vertices

is denoted by Kn. A graph Γ is called a bipartite graph if the vertex set V (Γ) is

partitioned into two subsets V1 and V2 such that every edge of Γ has an endpoint in

V1 and one endpoint in V2. A bipartite graph is said to be a complete bipartite graph

if each vertex of one partition is adjacent to every vertex of the other partition set.

We denote by Km,n a complete bipartite graph with partition sizes m and n. The

complete bipartite graph K1,n is called the star graph. The complement of a graph Γ

is the graph Γ such that V (Γ) = V (Γ) and two vertices u and v are adjacent in Γ if

and only if u is not adjacent to v in Γ. A path from u to v in a graph Γ is a sequence

of r + 1 distinct vertices starting with u and ending with v such that consecutive

vertices are adjacent. A graph Γ is said to be connected if there is a path between

any pair of vertices of Γ. If a graph Γ is equal to a path, then Γ is called a path graph.

By Pn we mean the path graph of n vertices. Let Γ1, . . . ,Γm be m graphs such that

V (Γi)∩V (Γj) = ∅, for distinct i, j. Then Γ = Γ1∪· · ·∪Γm is a graph with vertex set

V (Γ1)∪ · · · ∪ V (Γm) and edge set E(Γ1)∪ · · · ∪E(Γm). Let Γ1 and Γ2 be two graphs

with disjoint vertex set, the join Γ1 ∨Γ2 of Γ1 and Γ2 is the graph obtained from the

union of Γ1 and Γ2 by adding new edges from each vertex of Γ1 to every vertex of Γ2.

Two graphs Γ1 and Γ2 are isomorphic if there is a bijection f from V (Γ1) to V (Γ2)

such that if u ∼ v in Γ1 if and only if f(u) ∼ f(v) in Γ2.

The following two characterization of the line graph and the complement of the line

graph are useful in the sequel.

Lemma 1. [2] A graph Γ is the line graph of some graph if and only if none of the nine
graphs in Figure 1 is an induced subgraph of Γ.

Lemma 2. [1, Theorem 3.1] A graph Γ is the complement of a line graph if and only if
none of the nine graphs Γi in Figure 2 is an induced subgraph of Γ.
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Γ1 Γ2 Γ3 Γ4 Γ5

Γ6 Γ7 Γ8 Γ9

Figure 1. Forbidden induced subgraphs of line graphs.

Γ3
Γ1 Γ2 Γ4 Γ5

Γ6 Γ7 Γ8 Γ9

Figure 2. Forbidden induced subgraphs of the complement of line graphs.

Let G be a finite group. The order of an element x ∈ G is denoted by o(x). For a

positive integer n, φ(n) denotes the Euler’s totient function of n. The dihedral group

D2n is a regular n-gon with n-rotational symmetries and n-reflectional symmetries

mathematically represented as D2n = 〈x, y : xn = e, y2 = e and yxy−1 = x−1〉. For

n ≥ 2, the semidihedral group SD8n is a group of order 8n is defined as SD8n =

〈a, b : a4n = b2 = e, ba = a2n−1b〉. For n ≥ 2, the generalized quaternion group Q4n

is a group of order 4n is defined as Q4n = 〈a, b : a2n = e, an = b2, ab = ba−1〉.
If |G| = pn for some prime p, then G is called a p-group. An EPPO-group is a finite

group in which the order of every element is a power of a prime. Note that every

p-group is an EPPO-group. However, the converse need not be true. For example,

the symmetric group S3 and the dihedral group D2n, where n = pα for some odd

prime p, are EPPO-groups but not p-groups. The exponent of G is defined as the

least common multiple of the orders of all the elements of G and it is denoted by

exp(G). Throughout this paper, G is a finite group and e is the identity element of

G.

The following results are useful for later use.

Theorem 1. [7] Let G be a finite group. Then the following statements are equivalent:
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(i) G is a nilpotent group.

(ii) Every Sylow subgroup of G is normal.

(iii) G ∼= P1 × P2 × · · · × Pr, where Pi’s are Sylow pi-subgroups of G.

(iv) For x, y ∈ G, x and y commute whenever o(x) and o(y) are relatively primes.

Theorem 2. [9, Theorem 2.3] Let G be a finite group. Then the order supergraph S(G)
is complete if and only if G is a p-group.

3. Line graph characterization of S(G)

In this section, we classify all the groups G such that S(G) is a line graph (see Theorem

3). Further, we determine all the group classes such that S∗(G) (see Theorem 4) and

S∗∗(G) (see Theorem 5) are line graphs. Finally, we characterize all the groups G

such that S(G), S∗(G) and S∗∗(G) are the complement of the line graph of some

graph (see Theorem 6). The set {1, 2, . . . , k} is denoted by [k].

Theorem 3. The order supergraph S(G) is a line graph of some graph Γ if and only if
G is an EPPO-group and the order of G is divisible by at most two distinct primes.

Proof. First, assume that S(G) is a line graph. If |G| = pα1
1 pα2

2 · · · p
αk

k , where k ≥ 3,

then by Cauchy’s Theorem there exist x, y, z ∈ G such that o(x) = p1, o(y) = p2

and o(z) = p3. Note that the subgraph of S(G) induced by the set {e, x, y, z} is

isomorphic to Γ1. This implies that k ≤ 2 and so o(G) is divisible by at most two

primes. Now suppose there exists an element of order p1p2. Consider x, y, z, w ∈ G
such that o(x) = p1, o(y) = o(z) = p1p2 and o(w) = p2. Then the subgraph induced

by the set {e, x, y, z, w} is isomorphic to Γ3 (see Figure 1); a contradiction. Thus, G

is an EPPO-group.

Conversely, suppose G is an EPPO-group and o(G) is divisible by at most two primes.

If G is a p-group, then S(G) is complete and so S(G) is line graph. Now suppose

|G| = pα1
1 pα2

2 . Assume that Γ is an induced subgraph of S(G) such that Γ ∼= Γi for

some i, where 2 ≤ i ≤ 9. Note that Γ has an induced subgraph isomorphic to Γ
′

as

shown in Figure 3. Since x � w, we obtain x 6= e. Therefore, o(x) = pa1 or o(x) = pb2.

Without loss of generality, let o(x) = pa1 . Since x ∼ y it follows that o(y) = 1 or pa11 .

If y = e, then z 6= e. Since x ∼ z, we get o(z) = pa21 . Consequently z ∼ w gives

o(w) = ps1. Then either o(x)|o(w) or o(w)|o(x). Consequently, x ∼ w; a contradiction.

If o(y) = pa11 , then y ∼ w implies that o(w) = pa21 or 1. Since x is not adjacent to w,

therefore o(w) 6= 1. Now if o(w) = pa31 , then w ∼ x; a contradiction. Thus, Γ can not

be an induced subgraph of S(G).

Now if Γ ∼= K1,3 as shown in Figure 3. If o(d) = 1, then o(a) ∈ {pα1 , p
β
2}. Without

loss of generality, assume that o(a) = pα1 . Since a � b, it follows that o(b) = pγ2 .

Observe that o(c) ∈ {pr1, ps2}. Consequently, either a ∼ c or b ∼ c which is not

possible. Thus, o(d) 6= 1 and so o(d) ∈ {pt1, pt
′

2 }. Without loss of generality, assume
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that o(d) = pt1. Since a ∼ d and d ∼ b it imply that o(a), o(b) and o(d) are divisors of

pα1
1 . Consequently, a ∼ b; a contradiction. Thus, Γ1 cannot be an induced subgraph

of S(G). Hence, S(G) is a line graph.

y z

w

x

Γ′

a b

c

d

K1,3

Figure 3. Forbidden induced subgraphs of line graphs.

Let G be a nilpotent group. Then note that G is an EPPO-group if and only if G is

a p-group. Thus, we have the following corollary of Theorem 3.

Corollary 1. Let G be a finite nilpotent group. Then S(G) is a line graph of some graph
Γ if and only if G is a p-group.

Corollary 2. Let D2n be the dihedral group of order 2n. Then S(D2n) is a line graph of
some graph Γ if and only if n = pα for some prime p and α ∈ N.

Proof. Let S(D2n) be a line graph and let n is not a power of a prime. Note that

D2n has a cyclic subgroup of order n and so G contains an element of order pq,

where p, q are distinct prime divisors of n. Consequently, G is not an EPPO-group;

a contradiction to Theorem 3.

Conversely, if n = pα then D2n is an EPPO-group and therefore S(D2n) is a line

graph of some graph Γ.

Theorem 4. The proper order supergraph S∗(G) is a line graph of some graph Γ if and
only if either G ∼= Z6 or G is an EPPO-group.

Proof. First, assume that S∗(G) is a line graph. Let G contains an element x of

order d > 6, which is not a power of a prime. Since φ(d) ≥ 4 for every d > 6, there

are at least four elements of order d in G. Consider x1, x2, x3, y1, y2 ∈ G such that

o(x1) = o(x2) = o(x3) = d, o(y1) = p and o(y2) = q, where p and q are distinct prime

divisors of d. Then the subgraph of S∗(G) induced by the set {x1, x2, x3, y1, y2} is

isomorphic to Γ3; a contradiction. Thus, G cannot have an element of order d.

Now suppose that G has an element of order 6. Further we have the following two

cases.
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Case 1. G has more than one cyclic subgroup of order 6.

In this case G has at least four elements of order 6. Consider x1, x2, x3, y1, y2 ∈ G
such that o(x1) = o(x2) = o(x3) = 6, o(y1) = 2 and o(y2) = 3. Then the subgraph

of S∗(G) induced by the set {x1, x2, x3, y1, y2} is isomorphic to Γ3; a contradiction.

Therefore, this case is not possible.

Case 2. G has exactly one cyclic subgroup of order 6.

In this case, we prove that G is isomorphic to Z6. Let H = 〈x〉 be the unique cyclic

subgroup of order 6 in G. Then g−1Hg = H for g ∈ G and so H is a normal

subgroup of G. Now we claim that CG(x) = 〈x〉. Clearly 〈x〉 ⊆ CG(x). Let y ∈
CG(x) \ 〈x〉. Then o(y) is the power of a prime. Consider o(y) = pα, for some

prime p. If gcd(6, p) = 1, then 〈xy〉 is a cyclic subgroup of order 6pα which is not

possible. If p = 2, then note that yx2 = x2y and o(x2) = 3. Consequently, G has a

cyclic subgroup of order 3.2α containing y, which is not possible. By using a similar

argument, we obtain a contradiction for p = 3. This proves our claim. Thus, 〈x〉 is a

normal subgroup of G and CG(x) = 〈x〉. For a normal subgroup H, it is known that
G

CG(H) is a subgroup of Aut(H). Thus, o(G) ∈ {6, 12}. Therefore, G is isomorphic to

one of the three groups: Z6, D12, Q12.

If G ∼= D12, then G has seven elements of order 2, two elements of order 3 and

two elements of order 6. Consider x1, x2, y1, y2, z1, z2 such that o(x1) = o(x2) = 2,

o(y1) = o(y2) = 3 and o(z1) = o(z2) = 6. The subgraph of S∗(G) induced by the set

{x1, x2, y1, y2, z1, z2} is isomorphic to Γ6; a contradiction.

If G ∼= Q12, then G has two elements of order 6, two elements of order 3, one element

of order 2 and six elements of order 4. Let x1, x2, y1, y2, z1, z2 ∈ G be such that

o(x1) = o(x2) = 6, o(y1) = o(y2) = 3, o(z1) = 2 and o(z2) = 4. The subgraph of

S∗(G) induced by the set {x1, x2, y1, y2, z1, z2} is isomorphic to Γ5, a contradiction.

It follows that G ∼= Z6.

Conversely, if G ∼= Z6 then note that S∗(G) is a line graph of the graph Γ (see Figure

4(a)).

2 4

1 5

3

(b)

2 4

1 5

3

(a)

Figure 4. (a) The graph Γ (b) L(Γ) = S∗(Z6).

Now let G be an EPPO-group, where |G| = pα1
1 · · · p

αk

k . Then S∗(G) is the disjoint

union of complete graphs Kn1
,Kn2

, . . . , Knk
, respectively, where ni(1 ≤ i ≤ k) is

the number of elements whose order is divisible by pi. Note that S∗(G) = L(K1,n1
∪

K1,n2
∪ · · · ∪K1,nk

). This completes our proof.
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The order supergraph S(G) is dominatable if S(G) has a dominating vertex other

than identity. In order to prove the Theorem 5, we require the following lemma.

Lemma 3. The graph S(G) is dominatable if and only if there exists an element x in G
such that o(x) = exp(G). Moreover, x is a dominating vertex in S(G).

Proof. If G is a p-group, then S(G) is complete. Thus, the result holds trivially.

We may now suppose that G is not a p-group. Let S(G) be a dominatable graph.

Then there exists a non-identity element x of G such that x is adjacent to every other

element of G. We show that o(x) = exp(G). Assume that exp(G) = pα1
1 pα2

2 · · · p
αk

k .

On contrary, let o(x) 6= exp(G). Then there exists i ∈ [k] such that pαi
i |o(x). Consider

g ∈ G such that o(g) = pαi
i . It follows that x ∼ g if and only if o(x) = pβi

i for some

βi < αi. But o(x) = pβi

i implies that x is not adjacent to the element z such that

o(z) = pj for some i 6= j ∈ [k]; a contradiction. Conversely, let G contains an element

x such that o(x) = exp(G). Then for any y ∈ G, we have o(y)|o(x). Thus, y ∼ x in

S(G) and so S(G) is dominatable.

Remark 1. If G is a finite group which is not a p-group, then x ( 6= e) ∈ G is a dominating
vertex of S(G) if and only if o(x) = exp(G). Thus, V (S∗∗(G)) = G \ (S ∪ {e}), where
S = {y ∈ G : o(y) = exp(G)}.

Theorem 5. Let G be a finite group such that S(G) is dominatable. Then S∗∗(G) is a
line graph of some graph Γ if and only if one of the following holds:

(i) G is a p-group.

(ii) The order of G is divisible by two primes and the order of each element of G is square-
free.

Proof. Let S∗∗(G) be a line graph and |G| = pα1
1 pα2

2 · · · p
αk

k , where p1 < p2 < · · · <
pk are primes. If k = 1 then G is a p-group. Now we discuss the following cases.

Case 1. k = 2.

Let exp(G) = pβ1

1 pβ2

2 . If β1, β2 = 1, then we obtain condition (ii). We may now

suppose that βi > 1 for some i ∈ {1, 2}. Now we discuss the following subcases:

Subcase 1.1. β1 > 1.

Consider x1, x2, y1, y2, z1, z2 ∈ G such that o(x1) = p1, o(x2) = p2
1, o(y1) =

o(y2) = p2 and o(z1) = o(z2) = p1p2. The subgraph of S∗∗(G) induced by the

set {x1, x2, y1, y2, z1, z2} is isomorphic to Γ5; a contradiction.

Subcase 1.2. β2 > 1.

Consider x1, x2, y1, y2, z1, z2 ∈ G such that o(x1) = o(x2) = p2, o(y1) = o(y2) =

p1p2 and o(z1) = o(z2) = p2
2. The subgraph of S∗∗(G) induced by the set

{x1, x2, y1, y2, z1, z2} is isomorphic to Γ6; a contradiction.

Case 2. k ≥ 3.

Let exp(G) = pβ1

1 pβ2

2 · · · pkβk , for some 1 ≤ βi ≤ αi for i ∈ [k]. Let
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x1, x2, y1, y2, z1, z2 ∈ G be such that o(x1) = o(x2) = p2, o(y1) = o(y2) =

p3 and o(z1) = o(z2) = p2p3. The subgraph of S∗∗(G) induced by the set

{x1, x2, y1, y2, z1, z2} is isomorphic to Γ6, a contradiction.

Conversely, if G is a p-group then S∗∗(G) is the empty graph and so is a line graph.

If G satisfies condition (ii), then πG = {1, p, q, pq}. Note that S∗∗(G) ∼= K|S1|∪K|S2|,

where S1 is the set of elements of order p and S2 is the set of elements of order q.

Observe that K|S1| ∪K|S2| = L(K1,|S1| ∪K1,|S2|). This completes our proof.

Corollary 3. Let G be the generalized quaternion group Q4n. Then S∗∗(Q4n) is a line
graph of some graph Γ if and only if n = 2k for some k ∈ N.

Proof. Since Q4n contains an element of order 4, therefore, by Theorem 5, S∗∗(Q4n)

is a line graph if and only if n = 2k.

Corollary 4. Let G be the semidihedral group SD8n. Then S∗∗(SD8n) is a line graph
of some graph Γ if and only if n = 2k for some k ≥ 2.

Proof. Since SD8n contains an element of order 8, therefore, by Theorem 5,

S∗∗(SD8n) is a line graph if and only if n = 2k.

Theorem 6. Let G be a finite group and let ∆(G) ∈ {S(G), S∗(G), S∗∗(G)}. Then
∆(G) is the complement of the line graph if and only if either G ∼= Z6 or G is a p-group.

Proof. Let ∆(G) be the complement of the line graph of some graph Γ. If G is

a p-group, then the result holds. Suppose G is not a p-group. Then we have the

following cases.

Case 1. p|o(G), where p > 3 is a prime.

In this case, we have at least four elements of order p in G. Let x, y, z ∈ G such that

o(x) = o(y) = o(z) = p. Since G is not a p-group. Consequently, it is divisible by an

another prime q. Consider w ∈ G such that o(w) = q. The subgraph of ∆(G) induced

by the set {x, y, z, w} is isomorphic to Γ1, which is a contradiction (see Figure 2).

Case 2. o(G) = 2α3β for some α, β ∈ N.

Without loss of generality, assume that β ≥ 2. Let H be the Sylow subgroup of G

such that o(H) = 3β . Consider three non-identity elements x, y, z of H. Let w ∈ G
such that o(w) = 2. Then the subgraph of ∆(G) induced by the set {x, y, z, w} is

isomorphic to Γ1, a contradiction. Thus, o(G) = 6. If G ∼= S3, then it has an induced

subgraph which is isomorphic to Γ1.

Conversely, if G is a p-group, then S(G) and S∗(G) are complete graph, whereas

S∗∗(G) is the empty graph (cf. Theorem 2). Thus, S(G) = L(nK2) and S∗(G) =

L((n− 1)K2). If G ∼= Z6, then S(Z6) is isomorphic to the complement of the line

graph of a graph Γ′′ (see Figure 5). Since S∗(G) and S∗∗(G) are induced subgraphs
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Γ′′ L(Γ′′)

Figure 5. The graph Γ′′ and the complement of the line graph of Γ′′.

of S(G). Consequently, being induced subgraphs S∗(G) and S∗∗(G) are also the

complement of the line graph of the induced subgraphs of Γ
′′

(cf. Figure 5). This

completes the proof.

Acknowledgements: The first author wishes to acknowledge the financial sup-

port funded by Science and Engineering Research Board (SERB), Government of

India. The third author wishes to acknowledge the support of Core Research Grant

(CRG/2022/001142) funded by Science and Engineering Research Board (SERB),

Government of India.

Conflicts of Interest/Competing Interests: There is no conflict of interest re-

garding the publishing of this paper.

Availability of data and material (data transparency): Not applicable.

Code availability (software application or custom code): Not applicable.

References

[1] Z. Barati, Line zero divisor graphs, J. Algebra Appl. 20 (2021), no. 9, Article ID:

2150154.

https://doi.org/10.1142/S0219498821501541.

[2] L.W. Beineke, Characterizations of derived graphs, J. Combin. Theory 9 (1970),

no. 2, 129–135.

https://doi.org/10.1016/S0021-9800(70)80019-9.

[3] S. Bera, Line graph characterization of power graphs of finite nilpotent groups,

Comm. Algebra 50 (2022), no. 11, 4652–4668.

https://doi.org/10.1080/00927872.2022.2069793.

[4] P.J. Cameron, The power graph of a finite group, II, J. Group Theory 13 (2010),

no. 6, 779–783.

https://doi.org/10.1515/jgt.2010.023.



M. Manisha, et al. 11

[5] P.J. Cameron and S. Ghosh, The power graph of a finite group, Discrete Math.

311 (2011), no. 13, 1220–1222.

https://doi.org/10.1016/j.disc.2010.02.011.

[6] A. Doostabadi, A. Erfanian, and D.G. Farrokhi, On power graphs of finite groups

with forbidden induced subgraphs, Indag. Math. 25 (2014), no. 3, 525–533.

https://doi.org/10.1016/j.indag.2014.01.003.

[7] D.S. Dummit and R.M. Foote, Abstract Algebra, Prentice Hall, Inc., Englewood

Cliffs, NJ, 1991.

[8] A. Hamzeh and A.R. Ashrafi, Automorphism groups of supergraphs of the power

graph of a finite group, European J. Combin. 60 (2017), 82–88.

https://doi.org/10.1016/j.ejc.2016.09.005.

[9] , The order supergraph of the power graph of a finite group, Turkish J.

Math. 42 (2018), no. 4, 1978–1989.

https://doi.org/10.3906/mat-1711-78.

[10] , Some remarks on the order supergraph of the power graph of a finite

group, Int. Electron. J. Algebra 26 (2019), 1–12.

https://doi.org/10.24330/ieja.586838.

[11] A. Kelarev, Graph Algebras and Automata, CRC Press, New York, 2003.

[12] , Labelled Cayley graphs and minimal automata, Australas. J. Combin. 30

(2004), 95–101.

[13] A. Kelarev, J. Ryan, and J. Yearwood, Cayley graphs as classifiers for data

mining: The influence of asymmetries, Discrete Math. 309 (2009), no. 17, 5360–

5369.

https://doi.org/10.1016/j.disc.2008.11.030.

[14] A.V. Kelarev and S.J. Quinn, A combinatorial property and power graphs of

groups, Contributions to General Algebra 12 (2000), no. 58, 3–6.

[15] A. Khalili Asboei and S.S.S. Amiri, The main supergraph of finite groups, New

York J. Math. 28 (2022), no. 28, 1057–1063.

[16] A. Kumar, L. Selvaganesh, P.J. Cameron, and T.T. Chelvam, Recent develop-

ments on the power graph of finite groups–a survey, AKCE Int. J. Graphs Comb.

18 (2021), no. 2, 65–94.

https://doi.org/10.1080/09728600.2021.1953359.

[17] X. Ma and H. Su, On the order supergraph of the power graph of a finite group,

Ric. Mat. 71 (2022), no. 2, 381–390.

https://doi.org/10.1007/s11587-020-00520-w.

[18] P. Manna, P.J. Cameron, and R. Mehatari, Forbidden subgraphs of power graphs,

Electron. J. Combin. 28 (2021), no. 3, ]P3.4

https://doi.org/10.37236/9961.

[19] Parveen and J. Kumar, On finite groups whose power graphs are line graphs, J.

Algebra Appl. (2024), In press.

https://doi.org/10.1142/S0219498825502858.


	Introduction
	Preliminaries
	Line graph characterization of S(G)
	References

