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Abstract: Let D be a digraph with vertex set V (D), and let k ≥ 1 be an integer. A
weak signed Roman k-dominating function on a digraph D is a function f : V (D) −→
{−1, 1, 2} such that

∑
u∈N−[v] f(u) ≥ k for every v ∈ V (D), where N−[v] consists of v

and all vertices of D from which arcs go into v. A set {f1, f2, . . . , fd} of distinct weak

signed Roman k-dominating functions on D with the property that
∑d

i=1 fi(v) ≤ k for
each v ∈ V (D), is called a weak signed Roman k-dominating family (of functions) on

D. The maximum number of functions in a weak signed Roman k-dominating family

on D is the weak signed Roman k-domatic number of D, denoted by dkwsR(D). In this
paper we initiate the study of the weak signed Roman k-domatic number in digraphs,

and we present sharp bounds for dkwsR(D). In addition, we determine the weak signed

Roman k-domatic number of some digraphs.
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1. Introduction

For notation and graph theory terminology, we in general follow Haynes, Hedetniemi

and Slater [7]. Specifically, let G be a simple graph with vertex set V = V (G) and

edge set E = E(G). The order |V | of G is denoted by n = n(G). For every vertex

v ∈ V , the open neighborhood N(v) is the set {u ∈ V (G) | uv ∈ E(G)} and the

closed neighborhood of v is the set N [v] = N(v) ∪ {v}. The degree of a vertex v ∈ V
is d(v) = |N(v)|. The minimum and maximum degree of a graph G are denoted by

δ = δ(G) and ∆ = ∆(G), respectively. A graph G is regular or r-regular if d(v) = r

for each vertex v of G. The complement of a graph G is denoted by G. We write Kn

for the complete graph of order n, Kp,q for the complete bipartite graph with partite

sets X and Y , where |X| = p and |Y | = q, and Cn for the cycle of length n.

Let now D be a finite and simple digraph with vertex set V (D) and arc set A(D).

The integers n = n(D) = |V (D)| and m = m(D) = |A(D)| are the order and the size
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of the digraph D, respectively. The sets N+
D (v) = N+(v) = {x|(v, x) ∈ A(D)} and

N−D (v) = N−(v) = {x|(x, v) ∈ A(D)} are called out-neighborhood and in-neighborhood

of the vertex v. Likewise, N+
D [v] = N+[v] = N+(v) ∪ {v} and N−D [v] = N−[v] =

N−(v) ∪ {v}. We write d+D(v) = d+(v) = |N+(v)| for the out-degree of a vertex

v and d−D(v) = d−(v) = |N−(v)| for its in-degree. The minimum and maximum

in-degree are δ− = δ−(D) and ∆− = ∆−(D) and the minimum and maximum out-

degree are δ+ = δ+(D) and ∆+ = ∆+(D). A digraph D is regular or δ-regular, if

δ−(D) = ∆−(D) = δ+(D) = ∆+(D) = δ. A digraph D is in-regular or δ-in-regular, if

δ−(D) = ∆−(D) = δ. If X ⊆ V (D), then D[X] is the subdigraph induced by X. For

an arc (x, y) ∈ A(D), the vertex y is an out-neighbor of x and x is an in-neighbor of

y, and we also say that x dominates y or y is dominated by x. An oriented cycle is an

orientation of a cycle. A digraph with no arcs is the empty digraph. The complement

D of a digraph D is the digraph with vertex set V (D) such that for any two distinct

vertices u, v the arc (u, v) belongs to D if and only if (u, v) does not belong to D. A

digraph D is called a tournament when either (u, v) ∈ A(D) or (v, u) ∈ A(D), but

not both, for each pair of distinct vertices u, v ∈ V (D).

In this paper we continue the study of Roman dominating functions and Roman

domatic numbers in graphs and digraphs (see, for example, the survey papers [2–

5]). If k ≥ 1 is an integer, then the signed Roman k-dominating function (SRkDF)

on a graph G is defined in [8] as a function f : V (G) −→ {−1, 1, 2} such that∑
u∈N [v] f(u) ≥ k for each v ∈ V (G), and such that every vertex u ∈ V (G) for which

f(u) = −1 is adjacent to at least one vertex w for which f(w) = 2. The weight of an

SRkDF f is the value ω(f) =
∑
v∈V f(v). The signed Roman k-domination number

of a graph G, denoted by γksR(G), equals the minimum weight of an SRkDF on G. A

γksR(G)-function is a signed Roman k-dominating function of G with weight γksR(G).

If k = 1, then we write γ1sR(G) = γsR(G). This case was introduced and studied in

[1].

A weak signed Roman k-dominating function (WSRkDF) on a graph G is defined

in [18] as a function f : V (G) −→ {−1, 1, 2} such that
∑
u∈N [v] f(u) ≥ k for each

v ∈ V (G). The weight of a WSRkDF f is the value ω(f) =
∑
v∈V f(v). The weak

signed Roman k-domination number of a graph G, denoted by γkwsR(G), equals the

minimum weight of a WSRkDF on G. A γkwsR(G)-function is a weak signed Roman k-

dominating function of G with weight γkwsR(G). The special case k = 1 was introduced

and investigated by Volkmann [16].

If k ≥ 1 is an integer, then the signed Roman k-dominating function (SRkDF) on

a digraph D is defined in [15] as a function f : V (D) −→ {−1, 1, 2} such that∑
u∈N−[v] f(u) ≥ k for each v ∈ V (D), and such that every vertex u ∈ V (D) for

which f(u) = −1 has an in-neighbor w for which f(w) = 2. The weight of an SRkDF

f is the value ω(f) =
∑
v∈V (D) f(v). The signed Roman k-domination number of a

digraph D, denoted by γksR(D), equals the minimum weight of an SRkDF on D. A

γksR(D)-function is a signed Roman k-dominating function of D with weight γksR(D).

If k = 1, then we write γ1sR(D) = γsR(D). This case was introduced and studied in

[11].
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A weak signed Roman k-dominating function (WSRkDF) on a digraph D is defined

in [20] as a function f : V (G) −→ {−1, 1, 2} such that
∑
u∈N−[v] f(u) ≥ k for each

v ∈ V (D). The weight of a WSRkDF f is the value ω(f) =
∑
v∈V (D) f(v). The weak

signed Roman k-domination number of a digraph D, denoted by γkwsR(D), equals

the minimum weight of a WSRkDF on D. A γkwsR(D)-function is a weak signed

Roman k-dominating function of D with weight γkwsR(D). The special case k = 1 was

introduced and investigated by Volkmann [17].

The weak signed Roman k-domination number of a graph (digraph) exists when

δ ≥ k
2 − 1 (δ− ≥ k

2 − 1). Therefore we assume in this paper that δ ≥ k
2 − 1 and

δ− ≥ k
2 − 1. The definitions lead to γkwsR(G) ≤ γksR(G) and γkwsR(D) ≤ γksR(D).

A concept dual in a certain sense to the domination number is the domatic number,

introduced by Cockayne and Hedetniemi [6]. They have defined the domatic number

d(G) of a graph G by means of sets. A partition of V (G), all of whose classes are

dominating sets in G, is called a domatic partition. The maximum number of classes

of a domatic partition of G is the domatic number d(G) of G. But Rall has defined a

variant of the domatic number of G, namely the fractional domatic number of G, using

functions on V (G). (This was mentioned by Slater and Trees in [12].) Analogous to

the fractional domatic number we may define the (weak) signed Roman k-domatic

number.

A set {f1, f2, . . . , fd} of distinct (weak) signed Roman k-dominating functions on G

with the property that
∑d
i=1 fi(v) ≤ k for each v ∈ V (G), is called in [10, 13, 19] a

(weak) signed Roman k-dominating family (of functions) on G. The maximum number

of functions in a (weak) signed Roman k-dominating family ((W)SRkD family) on G is

the (weak) signed Roman k-domatic number of G, denoted by (dkwsR(G)) dksR(G). The

(weak) signed Roman k-domatic number is well-defined and dkwsR(G) ≥ dksR(G) ≥ 1

for all graphs G with δ(G) ≥ k
2 − 1, since the set consisting of any (W)SRkDF forms

a (W)SRkD family on G. For more information on the Roman domatic problem, we

refer the reader to the survey article [5].

A set {f1, f2, . . . , fd} of distinct signed Roman k-dominating functions on a digraph

D with the property that
∑d
i=1 fi(v) ≤ k for each v ∈ V (D), is called in [14] a signed

Roman k-dominating family (of functions) on D. The maximum number of functions

in a signed Roman k-dominating family on D is the signed Roman k-domatic number

of D, denoted by dksR(D). A set {f1, f2, . . . , fd} of distinct weak signed Roman k-

dominating functions on a digraph D with the property that
∑d
i=1 fi(v) ≤ k for each

v ∈ V (D), is called a weak signed Roman k-dominating family (of functions) on D.

The maximum number of functions in a weak signed Roman k-dominating family on

D is the weak signed Roman k-domatic number of D, denoted by dkwsR(D).

The (weak) signed Roman k-domatic number is well-defined and dkwsR(D) ≥
dksR(D) ≥ 1 for all digraphs D with δ−(D) ≥ k

2 − 1, since the set consisting of

any (W)SRkDF forms a (W)SRkD family on D.

Our purpose in this paper is to initiate the study of the weak signed Roman k-domatic

number in digraphs. We first derive basic properties and bounds for the weak signed
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Roman k-domatic number of a digraph. In addition, we present upper bounds on the

sums γkwsR(D) + dkwsR(D) and dkwsR(D) + dkwsR(D). Furthermore, we determine the

weak signed Roman k-domatic number of some classes of digraphs.

The associated digraph G∗ of a graph G is the digraph obtained from G when each

edge e of G is replaced by two oppositely oriented arcs with the same ends as e. Since

N−G∗ [v] = NG[v] for each vertex v ∈ V (G) = V (G∗), the following useful observation

is valid,

Observation 1. If G∗ is the associated digraph of the graph G, then γk
wsR(G∗) = γk

wsR(G)
and dkwsR(G∗) = dkwsR(G).

We make use of the following known results in this paper.

Theorem A. ([20]) If k ≥ 1 and n ≥ k
2
are integers, then γk

wsR(K∗n) = k.

Theorem B. ([19]) If n ≥ k ≥ 1 are integers, then dkwsR(Kn) = n, unless n = k = 2, in
which case d2wsR(K2) = 1.

Theorem C. ([19]) If k, n ≥ 1 are integers such that n+1 ≤ k ≤ 2n−1, then dkwsR(Kn) =
n.

Using Observation 1 and Theorems B, C we obtain the next results immediately.

Corollary 1. If n ≥ k ≥ 1 are integers, then dkwsR(K∗n) = n, unless n = k = 2, in which
case d2wsR(K∗2 ) = 1.

Corollary 2. If k, n ≥ 1 are integers such that n+ 1 ≤ k ≤ 2n− 1, then dkwsR(K∗n) = n.

Theorem D. ([18, 19]) If C3t is a cycle of length 3t with an integer t ≥ 1, then γ4
wsR(C3t) =

4t and d4wsR(C3t) = 3.

Theorem E. ([19]) If Cn is a cycle of length n ≥ 3, then γ5
wsR(Cn) = γ5

sR(Cn) = d 5n
3
e.

Using Observation 1 and Theorems D and E, we obtain the next corollaries.

Corollary 3. If C∗3t is the associated digraph of the cycle C3t, then γ4
wsR(C∗3t) = 4t and

d4wsR(C∗3t) = 3.

Corollary 4. If C∗n is the associated digraph of the cycle Cn, then γ5
wsR(C∗n) = γ5

sR(Cn) =
d 5n

3
e.
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Theorem F. ([20]) If D is a δ-regular digraph of order n with δ ≥ k
2
− 1, then

γk
sR(D) ≥ γk

wsR(D) ≥ kn

δ + 1
.

Theorem G. ([20]) If D is a digraph of order n with δ−(D) ≥ k − 1, then γk
wsR(D) ≤

γk
sR(D) ≤ n.

Theorem H. ([20]) Let D be a digraph of order n with δ−(D) ≥ d k
2
e−1. Then γk

wsR(D) ≤
2n, with equality if and only if k is even, δ−(D) = k

2
−1, and each vertex of D is of minimum

in-degree or has an out-neighbor of minimum in-degree.

2. Bounds on the weak signed Roman k-domatic number

In this section we present basic properties of dkwsR(D) and sharp bounds on the weak

signed Roman k-domatic number of a digraph.

Theorem 2. If D is a digraph with δ−(D) ≥ k
2
− 1, then dkwsR(D) ≤ δ−(D) + 1.

Moreover, if dkwsR(D) = δ−(D) + 1, then for each WSRkD family {f1, f2, . . . , fd} on D with
d = dkwsR(D) and each vertex v of minimum in-degree,

∑
x∈N−[v] fi(x) = k for each function

fi and
∑d

i=1 fi(x) = k for all x ∈ N−[v].

Proof. Let {f1, f2, . . . , fd} be a WSRkD family on D such that d = dkwsR(D). If v

is a vertex of minimum in-degree δ−(D), then we deduce that

kd ≤
d∑
i=1

∑
x∈N−[v]

fi(x) =
∑

x∈N−[v]

d∑
i=1

fi(x)

≤
∑

x∈N−[v]

k = k(δ−(D) + 1)

and thus dkwsR(D) ≤ δ−(D) + 1.

If dkwsR(D) = δ−(D) + 1, then the two inequalities occurring in the proof become

equalities. Hence for the WSRkD family {f1, f2, . . . , fd} on D and for each vertex v

of minimum in-degree,
∑
x∈N−[v] fi(x) = k for each function fi and

∑d
i=1 fi(x) = k

for all x ∈ N−[v].

Theorem 3. If D is a digraph of order n with δ−(D) ≥ k
2
− 1, then

γk
wsR(D) · dkwsR(D) ≤ kn.

Moreover, if γk
wsR(D)·dkwsR(D) = kn, then for each WSRkD family {f1, f2, . . . , fd} on D with

d = dkwsR(D), each function fi is a γk
wsR(D)-function and

∑d
i=1 fi(v) = k for all v ∈ V (D).
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Proof. Let {f1, f2, . . . , fd} be a WSRkD family on D such that d = dkwsR(D) and

let v ∈ V (D). Then

d · γkwsR(D) =

d∑
i=1

γkwsR(D) ≤
d∑
i=1

∑
v∈V (D)

fi(v)

=
∑

v∈V (D)

d∑
i=1

fi(v) ≤
∑

v∈V (D)

k = kn.

If γkwsR(D) · dkwsR(D) = kn, then the two inequalities occurring in the proof be-

come equalities. Hence for the WSRkD family {f1, f2, . . . , fd} on D and for each

i,
∑
v∈V (D) fi(v) = γkwsR(D). Thus each function fi is a γkwsR(D)-function, and∑d

i=1 fi(v) = k for all v ∈ V (D).

Theorem A and Corollaries 1, 2 demonstrate that Theorems 2 and 3 are both sharp.

For some regular digraphs we will improve the upper bound given in Theorem 2.

Theorem 4. Let D be a δ-regular digraph of order n with δ ≥ k
2
− 1 such that

n = p(δ+ 1) + r with integers p ≥ 1 and 1 ≤ r ≤ δ and kr = t(δ+ 1) + s with integers t ≥ 0
and 1 ≤ s ≤ δ. Then dkwsR(D) ≤ δ.

Proof. Let {f1, f2, . . . , fd} be a WSRkD family on D such that d = dkwsR(D). It

follows that

d∑
i=1

ω(fi) =

d∑
i=1

∑
v∈V (D)

fi(v) =
∑

v∈V (D)

d∑
i=1

fi(v) ≤
∑

v∈V (D)

k = kn.

Theorem F implies

ω(fi) ≥ γkwsR(D) ≥
⌈
kn

δ + 1

⌉
=

⌈
kp(δ + 1) + kr

δ + 1

⌉
= kp+

⌈
kr

δ + 1

⌉
= kp+

⌈
t(δ + 1) + s

δ + 1

⌉
= kp+ t+ 1.

for each i ∈ {1, 2, . . . , d}. If we suppose to the contrary that d = δ+1, then the above

inequality chains lead to the contradiction

kn ≥
d∑
i=1

ω(fi) ≥ d(kp+ t+ 1) = (δ + 1)(kp+ t+ 1)

= kp(δ + 1) + (δ + 1)(t+ 1) = kp(δ + 1) + t(δ + 1) + δ + 1

= kp(δ + 1) + kr − s+ δ + 1 > kp(δ + 1) + kr = k(p(δ + 1) + r) = kn.

Thus d ≤ δ, and the proof is complete.
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Corollaries 1, 2 and 3 demonstrate that Theorem 4 is not valid in general.

Corollary 5. Let T be a δ-regular tournament with δ ≥ k
2
− 1. If kδ = t(δ+ 1) + s with

integers t ≥ 0 and 1 ≤ s ≤ δ, then dkwsR(T ) ≤ δ.

Proof. Since T is a δ-regular tournament, we observe that the order n = 2δ + 1 =

(δ + 1) + δ. Using Theorem 4 with r = δ, we obtain dkwsR(T ) ≤ δ.

Theorem 5. Let D be a digraph of order n ≥ 2 with δ−(D) ≥ d k
2
e−1. Then dkwsR(D) = n

if and only if G = K∗n, with exception of the cases k = 2n or k = n = 2, in which cases
d2nwsR(K∗n) = 1 or d2wsR(K∗2 ) = 1.

Proof. Let D = K∗n. If k = 2n, then the function f with f(x) = 2 for each

vertex x ∈ V (D) is the unique weak signed Roman dominating function on D and so

d2nwsR(K∗n) = 1. In addition, it follows from Corollaries 1 and 2 that d2wsR(K∗2 ) = 1

and dkwsR(K∗n) = n in the remaining cases.

Conversely, assume that dkwsR(D) = n. Then we deduce from Theorem 2 that n =

dkwsR(D) ≤ δ−(D) + 1, and so δ−(D) ≥ n − 1. Thus D = K∗n, and the proof is

complete.

Theorem 6. Let k ≥ 4 be an integer, and let D be a digraph of order n with δ−(D) ≥
d k
2
e − 1. If γk

wsR(D) ≤ 2n− 1, then dkwsR(D) ≥ 2.

Proof. Since γkwsR(D) ≤ 2n − 1, there exists a WSRkDF f1 with f1(v) ≤ 1 for at

least one vertex v ∈ V (D). Note that f2 : V (D) −→ {−1, 1, 2} with f2(x) = 2 for

each vertex x ∈ V (D) is another WSRkDF on D. As f1(x) + f2(x) ≤ 4 ≤ k for each

vertex x ∈ V (D), {f1, f2} is a weak signed Roman k-dominating family on D and

thus dkwsR(D) ≥ 2.

If D is a digraph with δ−(D) = 0, then Theorem 2 implies dwsR(D) = d2wsR(D) = 1.

Therefore Theorem 6 is not valid for k = 1 or k = 2 in general. The next example

will show that Theorem 6 is also not valid for k = 3.

Example 1. Let Co
2q+1 be an oriented cycle of odd length 2q + 1 with an integer q ≥

1. Since Co
2q+1 is 1-regular, Theorem 4 shows with n = 2q + 1, k = 3 and δ = 1 that

d3wsR(Co
2q+1) = 1.

For k = 2 we will present a further example.

Example 2. Let Q = H ◦K1 be the digraph constructed from a digraph H, where for each
vertex v ∈ V (H), a new vertex v′ and the arc (v, v′) are added. If f is a WSR2DF on Q,
then it is easy to see that f(x) ≥ 1 for each vertex x ∈ V (Q). Suppose that d2wsR(Q) = 2,
and let {f1, f2} be a weak signed Roman 2-dominating family on Q. Since f1 and f2 are
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distinct, we observe that f1(w) = 2 or f2(w) = 2 for at least one vertex w ∈ V (Q). Hence
f1(w) + f2(w) ≥ 3, a contradiction to f1(w) + f2(w) ≤ 2. This implies d2wsR(Q) = 1.

Theorem 7. Let D be a digraph of order n with δ−(D) ≥ 1. If the set V1 = {x | d−D(x) =
1} is independent or empty, then d3wsR(D) ≥ 2.

Proof. Define the functions f1 and f2 by f1(x) = 1 if x ∈ V1 and f1(x) = 2 if

x ∈ V (D) \ V1 and f2(x) = 2 if x ∈ V1 and f2(x) = 1 if x ∈ V (D) \ V1. Since V1 is

independent, we observe that
∑
x∈N−[u] f(x) = 3 for u ∈ V1 and

∑
x∈N−[u] f(x) ≥ 3

for u ∈ V (D)\V1. Therefore f1 and f2 are weak signed Roman 3-dominating functions

of D such thst f1(u) + f2(u) = 3 for each vertex u ∈ V (D). Consequently, {f1, f2} is

a weak signed Roman 3-dominating family on D and thus d3wsR(D) ≥ 2.

Corollary 6. Let D be a digraph of order n with δ−(D) ≥ 1. If 2n−1 ≥ γ4
wsR(D) > 4n

3
,

then d4wsR(D) = 2.

Proof. Theorem 6 implies d4wsR(D) ≥ 2.

Conversely, it follows from Theorem 3 that

d4wsR(D) ≤ 4n

γ4wsR(D)
<

4n
4n
3

= 3.

Thus d4wsR(D) ≤ 2, and the proof is complete.

Corollary 3 shows that the condition γ4wsR(D) > 4n
3 in Corollary 6 is best possible in

some sense.

Example 3. Let C∗n be the associated digraph of the cycle Cn. Then d5wsR(C∗n) = 2 if
n 6≡ 0 (mod 3) and d5wsR(C∗n) = 3 if n ≡ 0 (mod 3).

Proof. Let first n = 3t + ε with integers t ≥ 1 and 1 ≤ ε ≤ 2. It follows from

Theorem 3 and Corollary 4 that

d5wsR(C∗n) ≤ 5n

γ5wsR(C∗n)
=

5n⌈
5n
3

⌉ =
5(3t+ ε)⌈
5(3t+ε)

3

⌉ < 3.

Therefore d5wsR(C∗n) ≤ 2 and so Theorem 6 leads to d5wsR(C∗n) = 2 in these cases.

Let now n = 3t with an integer t ≥ 1 and C∗3t = v0v1 . . . v3t−1v0. Define the functions

f1, f2 and f3 by

f1(v3i) = 1, f1(v3i+1) = 2, f1(v3i+2) = 2,

f2(v3i) = 2, f2(v3i+1) = 1, f2(v3i+2) = 2,
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f3(v3i) = 2, f3(v3i+1) = 2, f3(v3i+2) = 1

for 0 ≤ i ≤ t − 1. It is easy to see that fi is a weak signed Roman 5-dominating

function on C∗3t of weight 5t for 1 ≤ i ≤ 3, and {f1, f2, f3} is a weak signed Roman

5-dominating family of on C∗3t. Therefore d5wsR(C∗3t) ≥ 3 and thus Theorem 2 implies

d5wsR(C∗3t) = 3.

Corollary 7. Let D be a digraph of order n with δ−(D) ≥ 2. If 2n−1 ≥ γ5
wsR(D) > 5n

3
,

then d5wsR(D) = 2.

Proof. Theorem 6 implies d5wsR(D) ≥ 2.

Conversely, it follows from Theorem 3 that d5wsR(D) ≤ 5n
γ5
wsR(D)

< 5n
5n
3

= 3. Thus

d5wsR(D) ≤ 2, and the proof is complete.

Example 3 demonstrates that the condition γ5wsR(D) > 5n
3 in Corollary 7 is best

possible in some sense.

Theorem 8. Let k ≥ 6 be an integer, and let D be a digraph of order n with δ−(D) ≥
d k
2
e − 1. If γk

wsR(D) ≤ 2n− 2, then dkwsR(D) ≥ 3.

Proof. Since γkwsR(D) ≤ 2n − 2, there exists a WSRkDF f1 with f1(u) = −1 for

at least one vertex u ∈ V (D) or f1(v) = 1 and f1(w) = 1 for two different vertices

v, w ∈ V (D). If f1(u) = −1, then f2(u) = 1 and f2(x) = 2 for x ∈ V (D) \ {u} as

well as f3(x) = 2 for each vertex x ∈ V (D) are further WSRkD functions on D. As

f1(x) + f2(x) + f3(x) ≤ 6 ≤ k for each vertex x ∈ V (D), {f1, f2, f3} is a weak signed

Roman k-dominating family on D and thus dkwsR(D) ≥ 3 in this case. If f1(v) = 1

and f1(w) = 1 for two different vertices v, w ∈ V (D), then f2(v) = 1 and f2(x) = 2

for x ∈ V (D) \ {v} as well as f3(x) = 2 for each vertex x ∈ V (D) are further WSRkD

functions on D. As f1(x)+f2(x)+f3(x) ≤ 6 ≤ k for each vertex x ∈ V (D), {f1, f2, f3}
is a weak signed Roman k-dominating family on D and thus dkwsR(D) ≥ 3 also in the

second case.

Example 4. Let p ≥ 4 be an integer, and let Hp be the graph consisting of p triangles
y1i y

2
i y

3
i y

1
i for 1 ≤ i ≤ p, a further vertex w adjacent to y1i for 1 ≤ i ≤ p and the cycle

y11y
2
1 . . . x

p
1y

1
1. If H∗p is the associated digraph of Hp, then let f be a WSR6DF on H∗p . We

observe that f(x) = 2 for each vertex x ∈ V (H∗p ) \ {w}. Hence there exist exactly three weak
signed Roman 6-dominating functions on H∗p , namely, f1(w) = −1 and f1(x) = 2 for x 6= w,
f2(w) = 1 and f2(x) = 2 for x 6= w and f3(x) = 2 for each vertex x. Thus d6wsR(H∗p ) = 3.

Example 5. Let p ≥ 5 be an integer, and let Lp be the graph consisting of p complete
graphs with vertex set {y1i , y2i , y3i , y4i } for 1 ≤ i ≤ p, a further vertex w adjacent to y1i for
1 ≤ i ≤ p and the cycle y11y

2
1 . . . x

p
1y

1
1. If L∗p is the associated digraph of Lp, then let f be a

WSR8DF on L∗p. We observe that f(x) = 2 for each vertex x ∈ V (L∗p) \ {w}. Hence there
exist exactly three weak signed Roman 8-dominating functions on L∗p, namely, f1(w) = −1
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and f1(x) = 2 for x 6= w, f2(w) = 1 and f2(x) = 2 for x 6= w and f3(x) = 2 for each vertex
x. Thus d8wsR(L∗p) = 3.

Examples 4 and 5 show that Theorem 8 is sharp.

3. Upper bounds on the sum γkwsR(D) + dkwsR(D)

Theorem 9. If D is a digraph of order n ≥ 1 and δ−(D) ≥ k − 1, then

γk
wsR(D) + dkwsR(D) ≤ n+ k.

Proof. If dkwsR(D) ≤ k, then Theorem G implies γkwsR(D) + dkwsR(D) ≤ n + k

immediately. Let now dkwsR(D) ≥ k. It follows from Theorem 3 that

γkwsR(D) + dkwsR(D) ≤ kn

dkwsR(D)
+ dkwsR(D).

According to Theorem 2, we have k ≤ dkwsR(D) ≤ n. Using these bounds, and the

fact that the function g(x) = x+(kn)/x is decreasing for k ≤ x ≤
√
kn and increasing

for
√
kn ≤ x ≤ n, we obtain

γkwsR(D) + dkwsR(D) ≤ kn

dkwsR(D)
+ dkwsR(D) ≤ max{n+ k, k + n} = n+ k,

and the desired bound is proved.

Theorem 10. Let D be a digraph of order n ≥ 2 and δ−(D) ≥ d k
2
e − 1. Then

γk
wsR(D) + dkwsR(D) ≤ 2n+ k − 1,

with equality if and only if k = 2 and D is the empty digraph.

Proof. If δ− = δ−(D) ≥ k − 1, then Theorem 9 implies

γkwsR(D) + dkwsR(D) ≤ n+ k < 2n+ k − 1.

Assume next that dk2 e − 1 ≤ δ− ≤ k − 2. Then k ≥ 2 and according to Theorem H

and Theorem 2, we obtain

γkwsR(D) + dkwsR(D) ≤ 2n+ δ− + 1 ≤ 2n+ k − 1. (3.1)

If we have equality in (3.1), then γkwsR(D) = 2n and dkwsR(D) = k − 1. Therefore

Theorem 3 leads to 2n(k− 1) = γkwsR(D) · dkwsR(D) ≤ kn and so k = 2. Thus δ− = 0

and Theorem H implies that D is the empty digraph.

Clearly, if D is the empty digraph, then γ2wsR(D) = 2n and d2wsR(D) = 1 and thus

γ2wsR(D) + d2wsR(D) = 2n+ 1 = 2n+ 2− 1.
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Theorem 11. Let k ≥ 3 be an integer, and let D be a digraph of order n with
δ−(D) ≥ d k

2
e− 1. If k = 2n, then D = K∗n and γk

wsR(D) + dkwsR(D) = 2n+ 1. If k ≤ 2n− 1,
then

γk
wsR(D) + dkwsR(D) ≤ 2n+

⌈
k

2

⌉
− 1.

Proof. Since n ≥ δ−(D) + 1 ≥ dk2 e ≥
k
2 , we observe that k ≤ 2n.

If k = 2n, then δ−(D) + 1 = n and thus D = K∗n. Theorem H implies γkwsR(D) = 2n.

Clearly, dkwsR(D) = 1 and therefore γkwsR(D) + dkwsR(D) = 2n+ 1.

Let now k ≤ 2n−1. In this case, it is straightforward to verify that n+k ≤ 2n+dk2 e−1.

If δ− = δ−(D) ≥ k − 1, then the last inequality and Theorem 9 lead to the desired

bound.

Assume next that dk2 e − 1 ≤ δ− ≤ k − 1. If γkwsR(D) = 2n, then the definitions lead

to dkwsR(D) = 1 and thus

γkwsR(D) + dkwsR(D) = 2n+ 1 ≤ 2n+

⌈
k

2

⌉
− 1.

Let now γkwsR(D) ≤ 2n− 1. If dkwsR(D) ≤ dk2 e, then the desired bound is immediate.

Finally, let dkwsR(D) ≥ dk2 e+ 1. Using Theorem 2, we observe that

⌈
k

2

⌉
+ 1 ≤ dkwsR(D) ≤ δ− + 1 ≤ k.

We deduce from Theorem 3 that

γkwsR(D) + dkwsR(D) ≤ kn

dkwsR(D)
+ dkwsR(D).

Using these bounds, we obtain analogously to the proof of Theorem 9 that

γkwsR(D) + dkwsR(D) ≤ max

{
kn

dk/2e+ 1
+

⌈
k

2

⌉
+ 1, n+ k

}
.

Since n ≥ δ− + 1 ≥ dk2 e+ 1, it is straightforward to verify that

kn

dk/2e+ 1
+

⌈
k

2

⌉
+ 1 ≤ 2n+

⌈
k

2

⌉
− 1,

and this leads to the desired bound.

Let k and n be integers such that n ≥ 3 and 2n− 2 ≤ k ≤ 2n− 1. Corollary 2 implies

dkwsR(K∗n) = n, and it follows from Theorem F that γkwsR(K∗n) ≥ k. Thus

γkwsR(K∗n) + dkwsR(K∗n) ≥ n+ k. (3.2)
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If k = 2n− 1, then we deduce from inequality (3.2) and Theorem 11 that

3n− 1 = n+ k ≤ γkwsR(K∗n) + dkwsR(K∗n) ≤ 2n+

⌈
k

2

⌉
− 1 = 3n− 1

and therefore γkwsR(K∗n) + dkwsR(K∗n) = 2n+
⌈
k
2

⌉
− 1 and γkwsR(K∗n) = k.

If k = 2n− 2, then we deduce from inequality (3.2) and Theorem 11 that

3n− 2 = n+ k ≤ γkwsR(K∗n) + dkwsR(K∗n) ≤ 2n+

⌈
k

2

⌉
− 1 = 3n− 2

and therefore γkwsR(K∗n) + dkwsR(K∗n) = 2n+
⌈
k
2

⌉
− 1 and γkwsR(K∗n) = k.

These examples demonstrate that the upper bound in Theorem 11 is sharp.

4. Nordhaus-Gaddum type results

Results of Nordhaus-Gaddum type study the extreme values of the sum or the prod-

uct of a parameter on a graph or digraph and its complement. In their classical

paper [9], Nordhaus and Gaddum discussed this problem for the chromatic number of

graphs. We present such inequalities for the weak signed Roman k-domatic number

of digraphs.

Theorem 12. If D is a digraph of order n with δ−(D), δ−(D) ≥ d k
2
e−1, then dkwsR(D)+

dkwsR(D) ≤ n+ 1. Furthermore, if dkwsR(D) + dkwsR(D) = n+ 1, then D is in-regular.

Proof. It follows from Theorem 2 that

dkwsR(D) + dkwsR(D) ≤ (δ−(D) + 1) + (δ−(D) + 1)

= (δ−(D) + 1) + (n−∆−(D)− 1 + 1) ≤ n+ 1.

If D is not in-regular, then ∆−(D)− δ−(D) ≥ 1 and thus the inequality chain above

implies the better bound dkwsR(D) + dkwsR(D) ≤ n.

In the case k = 1 we determine all regular digraphsD with dwsR(D)+dwsR(D) = n+1.

Theorem 13. If D is a δ-regular digraph of order n, then dwsR(D) + dwsR(D) = n+ 1
if and only if D = K∗n or D = K∗n.

Proof. If D = K∗n or D = K∗n, then Corollary 1 leads to dwsR(D)+dwsR(D) = n+1.

Conversely, assume that dwsR(D) + dwsR(D) = n + 1. Since D is δ-regular, D is

(n − 1 − δ)-regular. If δ = n − 1 or δ = 0, then D = K∗n or D = K∗n, and we obtain

the desired result.
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Next assume that 1 ≤ δ ≤ n − 2 and 1 ≤ n − 1 − δ ≤ n − 2. We assume, without

loss of generality, that δ ≤ (n − 1)/2. If n 6≡ 0 (mod(n − δ)), then it follows from

Theorems 2 and 4 that

n+ 1 = dwsR(D) + dwsR(D) ≤ (δ + 1) + (n− 1− δ) = n,

a contradiction. Therefore assume that n ≡ 0 (mod(n− δ)). Then n = q(n− δ) with

an integer q ≥ 2. Since δ ≤ (n− 1)/2, we obtain the contradiction

n = q(n− δ) ≥ q
(
n− n− 1

2

)
=
q(n+ 1)

2
≥ n+ 1.

This completes the proof.

In the case k = 2 we determine almost all regular digraphs D with d2wsR(D) +

d2wsR(D) = n+ 1.

Theorem 14. Let D be a δ-regular digraph of order n ≥ 3, and assume that neither D
nor D is 2-regular of order 6 or 5-regular of order 15. Then d2wsR(D) + d2wsR(D) = n+ 1 if
and only if D = K∗n or D = K∗n.

Proof. If D = K∗n or D = K∗n, then Corollary 1 leads to d2wsR(D)+d2wsR(D) = n+1.

Conversely, assume that d2wsR(D) + d2wsR(D) = n + 1. Since D is δ-regular, D is

δ-regular such that δ+δ+1 = n. If δ = n−1 or δ = 0, then D = K∗n or D = K∗n, and

we obtain the desired result. Next assume that 1 ≤ δ, δ ≤ n − 2 and that, without

loss of generality, δ ≤ δ.
Let 2δ = t(δ + 1) + s with integers t ≥ 0 and 0 ≤ s ≤ δ. If s 6= 0, then Theorems 2

and 4 imply

d2wsR(D) + d2wsR(D) ≤ δ + δ + 1 = n.

If s = 0, then the condition 1 ≤ δ ≤ δ and the identity 2δ = t(δ + 1) show that t = 1

and so

2δ = δ + 1. (4.1)

Let now

n = p(δ + 1) + r (4.2)

with integers p ≥ 1 and 0 ≤ r ≤ δ and when r 6= 0

2r = a(δ + 1) + b

with integers a ≥ 0 and 0 ≤ b ≤ δ. If b, r 6= 0, then we deduce from Theorems 2 and

4 that d2wsR(D) + d2wsR(D) ≤ δ + 1 + δ = n. Now let r 6= 0 and b = 0. Then

2r = a(δ + 1) = δ + 1. (4.3)
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Using (4.1), (4.2) and (4.3), we obtain

6r − 3 = δ + δ + 1 = n = p(δ + 1) + r = 2pr + r

and thus p = 1 or p = 2. If p = 1, then r = 1 and so δ = 1, δ = 1 and n = 3.

Therefore D and D are oriented cycles of length 3. In this case it is easy to see that

d2wsR(D) + d2wsR(D) = 2 = n − 1. If p = 2, then r = 3, δ = 5, δ = 9 and n = 15.

However, by the hypothesis, this is not allowed.

Finally, let r = 0. Then it follows from (4.1) and (4.2) that 3δ = δ+δ+1 = n = p(δ+1)

and thus p = 2 and hence δ = 2, δ = 3 and n = 6. However, this not allowed.

Using Theorems 2 and 4, one can prove the next result analogue to Theorem 3.4 in

[14].

Theorem 15. Let k ≥ 3 be an integer, and let D be a δ-regular digraph such that
δ, δ−(D) ≥ k

2
− 1. Then there is only a finite number of digraphs D such that dkwsR(D) +

dkwsR(D) = n(D) + 1.

Conjecture 1. Let k ≥ 3 be an integer. If D is a δ-regular digraph of order n such that
δ, δ−(D) ≥ k

2
− 1, then dkwsR(D) + dkwsR(D) ≤ n.

For tournaments T of odd order with δ−(T ), δ−(T ) ≥ k, we improve Theorem 12.

Theorem 16. If T is a tournament of odd order n ≥ 3 with δ−(T ), δ−(T ) ≥ k, then
dkwsR(T ) + dkwsR(T ) ≤ n− 1.

Proof. If T is not regular, then δ−(T ) ≤ (n − 3)/2 and δ−(T ) ≤ (n − 3)/2. Hence

Theorem 2 implies that

dkwsR(T ) + dkwsR(T ) ≤ (δ−(T ) + 1) + (δ−(T ) + 1) ≤ n− 3

2
+ 1 +

n− 3

2
+ 1 = n− 1.

Let now T be a δ-regular tournament. Then T is also a δ-regular tournament of order

n = 2δ + 1 such that kδ = (k − 1)(δ + 1) + (δ − k + 1). Using Corollary 5 with

1 ≤ s = δ − k + 1 ≤ δ, we deduce that

dkwsR(T ) + dkwsR(T ) ≤ δ + δ = 2δ = n− 1,

and the proof is complete.
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