[1] A. Asadpour, M.X. Goemans, A. Madry, S.O. Gharan, and A. Saberi, An ${O}(\log/\log\log n)$-approximation algorithm for the asymmetric traveling salesman problem, Oper. Res. 65 (2017), no. 4, 1043–1061.
https://doi.org/10.1287/opre.2017.1603
[2] M. Bläser, B. Manthey, and J. Sgall, An improved approximation algorithm for the asymmetric TSP with strengthened triangle inequality, J. Discrete Algorithms 4 (2006), no. 4, 623–632.
https://doi.org/10.1016/j.jda.2005.07.004
[3] M. Bläser and B. Siebert, Computing cycle covers without short cycles, Algorithms - ESA 2001 (Berlin, Heidelberg) (F.M. auf der Heide, ed.), Springer Berlin Heidelberg, 2001, pp. 368–379.
[6] N. Christofides, Worst-Case Analysis of a New Heuristic for the Travelling Salesman Problem, Management Science[s] Research Group, Graduate School of Industrial Administration, Carnegie-Mellon University, 1976.
[7] E.K. Gimadi and I.A. Rykov, Asymptotically optimal approach to the approximate solution of several problems of covering a graph by nonadjacent cycles, Proc. Steklov Inst. Math. 295 (2016), no. 1, 57–67.
https://doi.org/10.1134/S0081543816090078
[9] M. Grötschel, L. Lovász, and A. Schrijver, The ellipsoid method and its consequences in combinatorial optimization, Combinatorica 1 (1981), no. 2, 169–197.
https://doi.org/10.1007/BF02579273
[14] M.Y. Khachai and E.D. Neznakhina, A polynomial-time approximation scheme for the euclidean problem on a cycle cover of a graph, Proc. Steklov Inst. Math. 289 (2015), no. 1, 111–125.
https://doi.org/10.1134/S0081543815050107
[16] M.Y. Khachay, E.D. Neznakhina, and K.V. Ryzhenko, Constant-factor approximation algorithms for a series of combinatorial routing problems based on the reduction to the asymmetric traveling salesman problem, Proc. Steklov Inst. Math. 319 (2022), no. Suppl 1, S140–S155.
https://doi.org/10.1134/S0081543822060128
[18] E.D. Neznakhina, Y.Y. Ogorodnikov, K.V. Rizhenko, and M.Y. Khachay, Approximation algorithms with constant factors for a series of asymmetric routing problems, Dokl. Math. 108 (2023), no. 3, 499–505.
https://doi.org/10.1134/S1064562423701454
[20] K. Rizhenko, K. Neznakhina, and M. Khachay, Fixed ratio polynomial time approximation algorithm for the Prize-Collecting Asymmetric Traveling Salesman Problem, Ural Math. J. 9 (2023), no. 1, 135–146.
http://dx.doi.org/10.15826/umj.2023.1.012
[21] A. Schrijver, Combinatorial Optimization - Polyhedra and Efficiency, Springer, 2003.
[22] A.I. Serdyukov, Some extremal bypasses in graphs (in Russian), Upravlyaemye Systemy 17 (1978), 76–79.
[23] O. Svensson, J. Tarnawski, and L.A. V´egh, A constant-factor approximation algorithm for the Asymmetric Traveling Salesman Problem, J. Appl. Comput. Mech. 67 (2020), no. 6, 1–53.
https://doi.org/10.1145/3424306
[24] P. Toth and D. Vigo, The vehicle routing problem, SIAM, Philadelphia, PA, USA, 2002.
[25] V. Traub and J. Vygen, An improved approximation algorithm for the asymmetric traveling salesman problem, SIAM J. Comput. 51 (2022), no. 1, 139–173.
https://doi.org/10.1137/20M1339313
[26] L.A. Wolsey, Heuristic analysis, linear programming and branch and bound, pp. 121–134, Springer Berlin Heidelberg, Berlin, Heidelberg, 1980.