[1] B.S. Anand, U. Chandran S.V., M. Changat, S. Klavžar, and E.J. Thomas, Characterization of general position sets and its applications to cographs and bipartite graphs, Appl. Math. Comput. 359 (2019), 84–89.
https://doi.org/10.1016/j.amc.2019.04.064
[3] A. Bondy and U.S.R. Murty, Graph Theory, Springer London, 2009.
[4] B. Brešar, M.A. Henning, S. Klavžar, and D.F. Rall, Domination Games Played on Graphs, Springer Cham, 2021.
[5] B. Brešar, S. Klavžar, and D.F. Rall, Domination game and an imagination strategy, SIAM J. Discrete Math. 24 (2010), no. 3, 979–991.
https://doi.org/10.1137/100786800
[6] U. Chandran S.V., S. Klavžar, P.K. Neethu, and R. Sampaio, The general position avoidance game and hardness of general position games, Theor. Comput. Sci. 988 (2024), Article ID: 114370.
https://doi.org/10.1016/j.tcs.2023.114370
[7] U. Chandran S.V. and G.J. Parthasarathy, The geodesic irredundant sets in graphs, Int. J. Math. Comb. 4 (2016), 135–143.
[8] G. Di Stefano, S. Klavžar, A. Krishnakumar, J. Tuite, and I. Yero, Lower general position sets in graphs, Discuss. Math. Graph Theory (2024), In press.
https://doi.org/10.7151/dmgt.2542
[9] H.E. Dudeney, Amusements in Mathematics, Nelson, Edinburgh, 1917.
[11] M. Gardner, Mathematical games, Sci. Am. 222 (1970), no. 6, 132–140.
[12] M. Gardner, Mathematical games: combinatorial problems, some old, some new and all newly attacked by computer, Sci. Am. 235 (1976), no. 4, 131–137.
[13] M. Ghorbani, H.R. Maimani, M. Momeni, F.R. Mahid, S. Klavžar, and G. Rus, The general position problem on kneser graphs and on some graph operations, Discuss. Math. Graph Theory 41 (2021), no. 4, 1199–1213.
http://doi.org/10.7151/dmgt.2269
[15] W.B. Kinnersley, D.B. West, and R. Zamani, Extremal problems for game domination number, SIAM J. Discrete Math. 27 (2013), no. 4, 2090–2107.
https://doi.org/10.1137/120884742
[26] J. Tian and K. Xu, The general position number of Cartesian products involving a factor with small diameter, Appl. Math. Comput. 403 (2021), Article ID: 126206.
https://doi.org/10.1016/j.amc.2021.126206