[4] S.A. Burr, Subtrees of directed graphs and hypergraphs, Proceedings of the Eleventh Southeastern Conference on Combinatorics, Graph Theory and Computing, Boca Raton, Congr. Numer, vol. 28, 1980, pp. 227–239.
5] N. Cohen, F. Havet, W. Lochet, and N. Nisse, Subdivisions of oriented cycles in digraphs with large chromatic number, J. Graph Theory 89 (2018), no. 4, 439–456.
https://doi.org/10.1002/jgt.22360
[9] R. Kim, S.J. Kim, J. Ma, and B. Park, Cycles with two blocks in $k$-chromatic digraphs, J. Graph Theory 88 (2018), no. 4, 592–605.
https://doi.org/10.1002/jgt.22232
[10] D.A. Mniny and S. Ghazal, Remarks on the subdivisions of bispindles and two-blocks cycles in highly chromatic digraphs, arXiv preprint arXiv:2010.10787 (2020).
[11] B. Roy, Nombre chromatique et plus longs chemins d’un graphe, Revue Fran¸caise D’Informatique Et De Recherche Opérationnelle 1 (1967), no. 5, 129–132.