[1] S. Abbas, Z. Raza, N. Siddiqui, F. Khan, and T. Whangbo, Edge metric dimension of honeycomb and hexagonal networks for IoT, Comput. Mater. Contin. 71 (2022), no. 2, 2683–2695.
[2] A. Ahmad, S. Husain, M. Azeem, K. Elahi, and M.K. Siddiqui, Computation of edge resolvability of benzenoid tripod structure, J. Math. 2021 (2021), no. 1, Article ID: 9336540.
https://doi.org/10.1155/2021/9336540
[3] Z. Beerliova, F. Eberhard, T. Erlebach, A. Hall, M. Hoffmann, M. Mihal’ak, and L.S. Ram, Network discovery and verification, IEEE J. Sel. Areas Commun. 24 (2006), no. 12, 2168–2181.
https://doi.org/10.1109/JSAC.2006.884015
[5] F. Harary and R.A. Melter, On the metric dimension of a graph, Ars Combin. 2 (1976), 191–195.
[10] S. Klavžar and S.S. Zemljič, On distances in Sierpiński graphs: Almost-extreme vertices and metric dimension, Appl. Anal. Discrete Math. 7 (2013), no. 1, 72–82.
https://doi.org/10.2298/AADM130109001K
[11] S. Klavžar and M. Tavakoli, Edge metric dimensions via hierarchical product and integer linear programming, Optim. Lett. 15 (2021), 1993–2003.
[12] M. Knor, S. Majstorović, A.T.M. Toshi, R. Škrekovski, and I.G. Yero, Graphs with the edge metric dimension smaller than the metric dimension, Appl. Math. Comput. 401 (2021), Article ID: 126076.
https://doi.org/10.1016/j.amc.2021.126076
[14] J.B. Liu, S. Wang, C. Wang, and S. Hayat, Further results on computation of topological indices of certain networks, IET Control Theory Appl. 11 (2017), no. 13, 2065–2071.
https://doi.org/10.1049/iet-cta.2016.1237
[16] P.D. Manuel, M.I. Abd-El-Barr, I. Rajasingh, and B. Rajan, An efficient representation of benes networks and its applications, J. Discrete Algorithms 6 (2008), no. 1, 11–19.
https://doi.org/10.1016/j.jda.2006.08.003
[17] P.D. Manuel and I. Rajasingh, Minimum metric dimension of silicate networks, Ars Combin. 98 (2011), 501–510.
[19] S. Prabhu, T. Flora, and M. Arulperumjothi, On independent resolving number of TiO2[m, n] nanotubes, J. Intell. Fuzzy Syst. 35 (2018), no. 6, 6421–6425.
https://doi.org/10.3233/JIFS-181314
[20] S. Prabhu, V. Manimozhi, M. Arulperumjothi, and S. Klavžar, Twin vertices in fault-tolerant metric sets and fault-tolerant metric dimension of multistage interconnection networks, Appl. Math. Comput. 420 (2022), Article ID: 126897.
https://doi.org/10.1016/j.amc.2021.126897
[23] P.J. Slater, Leaves of trees, Congr. Numer. 14 (1975), 549–559.
[25] D.G.L. Wang, M.M.Y. Wang, and S. Zhang, Determining the edge metric dimension of the generalized Petersen graph $P(n, 3)$, J. Comb. Optim. 43 (2022), no. 2, 460–496.
https://doi.org/10.1007/s10878-021-00780-8
[29] N. Zubrilina, Asymptotic behavior of the edge metric dimension of the random graph, Discuss. Math. Graph Theory 41 (2021), no. 2, 589–599.
https://doi.org/10.7151/dmgt.2210