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Abstract: The energy of a graph G is the sum of the absolute values of the
eigenvalues of its adjacency matrix. The energy of the line graph of graph G is de-

noted by E(L(G)). The unitary Cayley graph Xn is a graph with the vertex set

Zn = {0, 1, . . . , n− 1} and the edge set {(a, b) : ged(a− b, n) = 1}. In this paper, we
focus on the line graph of the unitary Cayley graph Xn and compute the spectrum of

line graphs of Xn and its complement graph Xn. We also obtain the energy of the line

graph of Xn and Xn.
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1. Introduction

Let G be a simple graph of order n with m edges. The eigenvalues λ1, λ2, . . . , λn of

the graph G are the eigenvalues of the adjacency matrix of graph G. Assume that

λ1 > λ2 > · · · > λt are a non-increasing sequence of eigenvalues of G and their

multiplicities are m1,m2, . . . ,mt, respectively. The spectrum of G is written as

Spec(G) =

(
λ1 . . . λt
m1 . . . mt

)
.

In [7, 13], the energy of graph G is defined as E(G) =
∑t
i=1mi|λi|. The line graph

of G, denoted by L(G) is the graph that each vertex of it corresponding to an edge

of G and two vertices of L(G) are adjacent if and only if the corresponding edges in

G have a common vertex [9]. The energy of the line graph of graph G is denoted

by E(L(G)). That is, E(L(G)) is the sum of the absolute values of eigenvalues of

A(L(G)) [1]. Some results are obtained on the energy of the line graphs that can be

found in [6, 8, 14].

Let n > 1 be a positive integer. The unitary Cayley graph Xn = Cay(Zn, Un) is

defined by the additive symmetric group Zn = {0, 1, . . . , n− 1} of integers modulo n
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and the multiplicative group Un of its units. The vertex set of Xn is the elements of

Zn and the edge set is as {(a, b) : a, b ∈ Zn, gcd(a− b, n) = 1} [12].

In [16], the energy of graph Xn is computed. The spectrum of Xn for n = pα where p is

a prime and n ≥ 1 is obtained [16]. Ilić [11] calculated the energy of the complement

of the unitary Cayley graph Xn. In [3], the authors obtained the minimum edge

dominating energy of some Cayley graphs including the unitary Cayley graphs. In

[15] by computing the eigenvalues and Laplacian eigenvalues of the unitary addition

Cayley graph and its complement, some bounds for energy and Laplacian energy

for these graphs were obtained. Chen and Huang [2] computed the formulas for the

eigenvalues of the Unitary Cayley graph and using these values presented the energy,

the Kirchhoff index, and the number of spanning trees of this graph.

In this paper, we focus on the line graphs of Xn and its complement Xn. We compute

the spectrum of L(Xn) and L(Xn). We also obtain the energy of the line graph of

the unitary Cayley graph Xn and its complement Xn.

2. Main Results

In this section, we compute the eigenvalues of the line graph of the unitary Cayley

graph Xn and its complement graph. Then, we calculate the energy of the graphs

L(Xn) and L(Xn) via their eigenvalues. To do this, we recall the following result on

the eigenvalues of the line graph of a regular graph.

Lemma 1. [5] Let G be a regular graph of degree r ≥ 2 with n vertices and m edges.
Then the following relations hold.

(i) For 1 ≤ i ≤ n, λi(L(G)) = λi(G) + r − 2,

(ii) for n+ 1 ≤ i ≤ m, λi(L(G)) = −2.

In the following theorem, we obtain the line graph spectrum of the unitary Cayley

graph Xn for n = pα where p is prime.

Theorem 1. Let Xn be the unitary Cayley graph where n = pα and p be prime. If L(Xn)
is the line graph of the unitary Cayley graph Xn, then the spectrum of L(Xn) is given as
follows

Spec(L(Xn)) =

(
2φ(n)− 2 2

(
φ(n)− 1

)
− n φ(n)− 2 −2

1 p− 1 n− p nφ(n)
2
− n

)
.

where φ(n) is the Euiler function.

Proof. Assume that Xn is the unitary Cayley graph of order n = pα and size

m = nφ(n)
2 whose the degree of all vertices is φ(n).

If α = 1, then the unitary Cayley graph Xp is the complete graph Kp. Note that the
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spectrum of graph Kp is p− 1 with multiplicity p− 1. Since n = p and φ(p) = p− 1,

we can consider the following from Spec(Kn).

Spec(Kn) =

(
p− 1 −1

1 p− 1

)
=

(
φ(n) φ(n)− n

1 n− 1

)
.

Since Kn is (n− 1)-regular graph, then using Lemma 1, we obtain the eigenvalues of

the line graph L(Kn) for 1 ≤ i ≤ n(n−1)
2 = m.

i) λ1(L(Kn)) = λ1(Kn) + φ(n)− 2 = 2φ(n)− 2.

ii) For 2 ≤ i ≤ p−1, we have λi(L(Kn)) = λi(Kn)+φ(n)−2 = φ(n)−n+φ(n)−2 =

2φ(n)− n− 2.

iii) For n ≤ i ≤ n(n−1)
2 = m, we have λi(L(Kn)) = −2.

Therefore, the Spec(L(Kn)) is as follows

Spec(L(Kn)) =

(
2φ(n)− 2 2

(
φ(n)− 1

)
− n −2

1 p− 1 nφ(n)
2 − n

)
.

Now, we assume α ≥ 2. In the proof of theorem 3.1 in [16], the spectrum of the

unitary Cayley graph Xn for n = pα is obtained as follows

Spec(Xpα) =

(
pα − pα−1 −pα−1 0

1 p− 1 pα − p

)
.

Since n = pα and φ(n) = pα − pα−1 = n − pα−1, we can consider the following

Spec(Xn) where n = pα.

Spec(Xpα) =

(
φ(n) φ(n)− n 0

1 p− 1 n− p

)
.

Using Lemma 1, Xn is a φ(n)-regular graph. Thus we can obtain the eigenvalues of

the line graph L(Xn).

i) λ1(L(Xn)) = λ1(Xn) + φ(n)− 2 = 2φ(n)− 2.

ii) For 2 ≤ i ≤ p, we have λi(L(Xn)) = λi(Xn) + φ(n)− 2 = φ(n)− n + φ(n)− 2 =

2
(
φ(n)− 1

)
− n.

iii) For p+1 ≤ i ≤ n, we have λi(L(Xn)) = λi(Xn)+φ(n)−2 = 0+φ(n)−2 = φ(n)−n.

iv) For n+ 1 ≤ i ≤ m = nφ(n)
2 , the eigenvalues of L(Xn) are λi(L(Xn)) = −2.

Therefore, according to the above eigenvalues, the result is completed.

Theorem 2. The energy of the line graph of the unitary Cayley graph Xn for n = pα

where p is prime, is given as follows

E(L(Xn)) = 2n
(
φ(n)− 2

)
.
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Proof. Let Xn be the φ(n)-regular graph with n = pα vertices and m = nφ(n)
2 edges.

According to the definition, the energy of the line graph of a graph is equal to the

sum of the absolute values of the eigenvalues of the adjacency matrix of its line graph.

Using Theorem 1, we obtain the energy of L(Xn), where n = pα.

For α = 1 where n = p, we obtained the spectrum of L(Xn) as follows

Spec(L(Xn)) =

(
2φ(n)− 2 2

(
φ(n)− 1

)
− n −2

1 p− 1 pφ(n)
2 − p

)
.

Therefore, we get

E(L(Xp)) =

m∑
i=1

∣∣λi(Xp)
∣∣

= 2φ(n)− 2 + (p− 1)
(

2
(
φ(n)− 1

)
− 2
)

+
(p(φ(n)

2
− p
)(
| − 2|

)
= 2pφ(n)− np+ pφ(n)− 3p

= p
(
φ(n)− n

)
+ p
(
2φ(n)− 3

)
. (2.1)

With considering n = p and φ(n) = p− 1, we have from (2.1),

E(L(Xp)) = p
(
φ(n)− n

)
+ p
(
2φ(n)− 3

)
= p(p− 1− p) + p

(
2φ(n)− 3

)
= −p+ p

(
2φ(n)− 3

)
= p
(
2φ(n)− 4

)
= 2n

(
φ(n)− 2

)
.

For α ≥ 2, using Theorem 1, the spectrum of line graph L(Xn) is as follows

Spec(L(Xn)) =

(
2φ(n)− 2 2

(
φ(n)− 1

)
− n φ(n)− 2 −2

1 p− 1 n− p nφ(n)
2 − n

)
.

Therefore, we get

E(L(Xpα)) =

m∑
i=1

∣∣λi(Xpα)
∣∣

= 2φ(n)− 2 + (p− 1)
(

2φ(n)− 2− n
)

+ (n− p)
(
φ(n)− 2

)
+
(n(φ(n)

2
− n

)(
| − 2|

)
= pφ(n)− pn− 3n+ 2nφ(n)
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= p
(
φ(n)− n

)
+ n

(
2φ(n)− 3

)
. (2.2)

With putting n = pα and φ(n) = pα − pα−1 in (2.2), we have

E(L(Xpα)) = p
(
φ(n)− n

)
+ n

(
2φ(n)− 3

)
= p
(
pα − pα−1 − pα

)
+ n

(
2φ(n)− 3

)
= p(−pα−1) + n

(
2φ(n)− 3

)
= −n+ n

(
2φ(n)− 3

)
= n

(
2φ(n)− 4

)
= 2n

(
φ(n)− 2

)
.

Let G1 = (V1, E1) and G2 = (V2, E2) be graphs. The direct product of G1 and G2 is

the graph G = (V,E) denoted by G1 ⊗G2 where V = V1 × V2, the direct product of

V1 and V2 with (v1, v2) and (u1, u2) are adjacent in G if and only if v1, u1 are adjacent

in G1 and v2, u2 are adjacent in G2. The following result is obtained about the direct

product of the unitary Cayley graphs.

Lemma 2. [16] Assume that (m,n) = 1. If Xm and Xn are the unitary Cayley graphs,
then Xm ⊗Xn ' Xmn.

Theorem 3. Let L(Xm) and L(Xn) be the line graph of the unitary Cayley graphs Xm
and Xn, respectively. If (m,n) = 1, then

L(Xm)⊗ L(Xn) ' L(Xmn).

Proof. Since for two graphs G1 and G2, if G1 ' G2 then L(G1) ' L(G2). Thus

by applying Lemma 2.2, it is sufficient to prove L(Xm) ⊗ L(Xn) ' L(Xm ⊗ Xn).

Therefore, we show that there is a one-to-one correspondence between the vertices

and edges of two graphs L(Xm)⊗ L(Xn) and L(Xm ⊗Xn).

Assume that e1 = a1b1 ∈ V (L(Zm)) = E(Zm) and e2 = a2b2 ∈ V (L(Zn)) = E(Zn).

Thus, (a1 − b1,m) = 1 = (a2 − b2, n). Since a1 ∼ b1 in Zm and a2 ∼ b2 in Zn thus

(a1, a2) ∼ (b1, b2) in Zm ⊗ Zn.

Therefore, e =
(
(a1, a2), (b1, b2)

)
∈ E(Zm ⊗ Zn) = V (L(Zm ⊗ Zn)). Consequently,

any vertex (e1, e2) = (a1b1, a2b2) in graph L(Zm)⊗L(Zn) corresponding to the vertex

e =
(
(a1, a2), (b1, b2)

)
in L(Zm⊗Zn). Therefore, there is the bijective correspondence

between vertex sets of L(Zm)⊗ L(Zn) and L(Zm ⊗ Zn).

We show that there is a bijective correspondence between edges in the line graph

(Zm ⊗ Zn) and the direct product of L(Zm) and L(Zn). Let k ∈ E(L(Zm ⊗ Zn)).

Thus, there are two vertices e and e′ in L(Zm ⊗ Zn) such that k = ee′ where e =
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(a1, b1), (a2, b2)

)
and e′ =

(
(a′1, b

′
1), (a′2, b

′
2)
)

for a1, a2, a
′
1, a
′
2 ∈ Zm and b1, b2, b

′
1, b
′
2 ∈

Zn. According to the line graph of a graph and without loss of generality assume that

(a1, b1) = (a′1, b
′
1). Therefore, a1 = a′1 and b1 = b′1.

On the other hand, the corresponding with vertices e and e′ in L(Zm ⊗Zn), we have

k1 = (a1a2, b1b2) ∈ L(Zm)⊗L(Zn) and k2 = (a′1a
′
2, b
′
1b
′
2) ∈ L(Zm)⊗L(Zn). Therefore,

it is sufficient to show that k1 and k2 are adjacent in L(Zm) ⊗ L(Zn). That is, we

show a1a2 ∼ a′1a
′
2 in L(Zm) and b1b2 ∼ b′1b

′
2 in L(Zn). Using the definition of the

line graph L(Zm) and since a1 = a′1 and b1 = b′1, then it is clear to have k1 and k2
are adjacent in L(Zm)⊗ L(Zn). This completes the proof.

Corollary 1. If n = pα1
1 . . . p

αk
k , then the direct product of unitary Cayley graph

L(XPα1
1

)⊗ · · · ⊗ L(XPαk
k

) ' L(Xn).

The tensor product A⊗B of the r×s matrix A = (aij) and the t×u matrix B = (bij)

is defined as rt×su matrix got by replacing each entry aij of A with the double array

aijB. For two graphs G1 and G2, A(G1 ⊗G2) = A(G1)⊗A(G2).

Lemma 3. [16] If G1 and G2 are any two graphs, then

E(G1 ⊗G2) = E(G1)E(G2).

Theorem 4. If n > 1 and n = pα1
1 . . . p

αk
k where pi are distinct primes and αi are positive

integers for 1 ≤ i ≤ k, then
E(Xn) = 2kn

(
φ(n)− 2k

)
.

Proof. Let Xn be the unitary Cayley graph. Using Lemma 3, Corollary 1 and

Theorem 2 we get

E(L(Xn)) = E
(
L(XP

α1
1

)⊗ · · · ⊗ L(XP
αk
k

)
)

= E
(
L(XP

α1
1

)
)
· · ·E

(
L(XP

αk
k

)
)

=
(

2Pα1
1

(
φ(Pα1

1 )− 2
))
· · ·
(

2Pαkk
(
φ(Pαkk )− 2

))
= 2k

(
pα1
1 . . . pαkk

)(
φ(pα1

1 ) . . . φ(pαkk )− 2k
)

= 2kn
(
φ(pα1

1 . . . pαkk )− 2k
)
.

Therefore, the result holds.

Graph G is said to be hyperenergetic if its energy exceeds the energy of the complete

graph Kn equivalently E(G) > 2n − 2 [10]. Using the following lemma, we obtain

Theorem 5 about hyperenergetic from the unitary Cayley graph Xn.
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Lemma 4. [10] Let G be a graph of order n ≥ 5 and of size m. If m ≥ 2n, then L(G) is
hyperenergetic.

Theorem 5. Let Xn be the unitary Cayley graph where n ≥ 5. If φ(n) ≥ 4, then L(Xn)
is hyperenergetic.

Proof. Xn is a graph of the order n ≥ 5 and size m = nφ(n)
2 ≥ 2n, therefore using

Lemma 4, the result is completed.

Lemma 5. [4] If G is a r-regular with n vertices then

PG(x) = (−1)n x− n+ r + 1

x+ r + 1
PG(−x− 1),

where PG is the characteristic polynomial of the complement of the graph G.

Theorem 6. Let Xn be the unitary Cayley graph with n = pα where α ≥ 2 and p ≥ 2.
Then the spectrum of the line graph of Xn is as follows

Spec(L(Xn)) =

(
2(n− φ(n)− 2) n− φ(n)− 4 −2

p n− p nφ(n)
2
− n

)
.

Proof. Let Xn be the φ(n)-regular graph with n vertices. Using Lemma 5 and

Theorem 3.1 in [16], the characteristic polynomial of Xn is as follows

PXn(λ) = (−1)n
(λ− n+ φ(n) + 1

λ+ φ(n) + 1

)
PXn(−λ− 1)

= (−1)n
(λ− n+ φ(n) + 1

λ+ φ(n) + 1

)(
− λ− φ(n)− 1

)
(
− λ− φ(n) + n− 1

)p−1(− λ− 1
)n−p

= (−1)2n
(
λ− n+ φ(n) + 1

)(
λ+ φ(n)− n+ 1

)p−1
(λ+ 1)n−p

=
(
λ+ φ(n)− n+ 1

)p
(λ+ 1)n−p.

Therefore, the eigenvalues of Xn are n − φ(n) − 1 with multiplicity p and −1 with

multiplicity n− p. Since Xn is an (n− 1)− φ(n)-regular graph, then the eigenvalues

of L(Xn) are as follows

i) For 1 ≤ i ≤ p, we get

λi(L(Xn)) = λi(Xn) + (n− 1)− φ(n)− 2

= n− φ(n)− 1 + (n− 1)− φ(n)− 2

= 2n− 2φ(n)− 4 = 2(n− φ(n)− 2).
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ii) For p+ 1 ≤ i ≤ n, we get

λi(L(Xn)) = λi(Xn) + (n− 1)− φ(n)− 2

= −1 + (n− 1)− φ(n)− 2

= n− φ(n)− 4.

iii) For n+ 1 ≤ i ≤ nφ(n)
2 , we have λi(L(Xn)) = −2.

Therefore, the result holds.

Theorem 7. Let Xn be the unitary Cayley graph with n = pα where α ≥ 2 and p ≥ 2. If
Xn is the complement of Xn, then the energy of L(Xn) is given as follows

i) If n = 4, then E(L(X4)) = 6.

ii) If n = 9, then E(L(X9)) = 58.

iii) If α ≥ 2 and p ≥ 5, then E(L(Xn)) = n(n− 5).

Proof. Using Theorem 6, we get

E(L(Xpα)) =

m∑
i=1

∣∣λi(L(Xpα)
)∣∣

= 2p
∣∣n− φ(n)− 2

∣∣+ (n− p)
∣∣n− φ(n)− 4

∣∣+
(nφ(n)

2
− n

)
| − 2|.

We consider the following cases.

Case 1. If α = 2 and p = 2, 3, then

E(L(Xp2)) = 2p
(
n− φ(n)− 2

)
+ (n− p)

(
4− n+ φ(n)

)
+ nφ(n) + 2n.

With putting α = 2 and p = 2, 3, we obtain E(L(X22)) = 6 and E(L(X32)) = 58.

Case 2. Let α ≥ 2 and p ≥ 5. Then

E(L(Xpα)) = 2p
(
n− φ(n)− 2

)
+ (n− p)

(
n− φ(n)− 4

)
+ nφ(n)− 2n

= pn− pφ(n) + n2 − 6n

= p
(
n− φ(n)

)
+ (n2 − 6n)

= p
(
pα − pα + pα−1

)
+ (n2 − 6n)

= p(pα−1) + n2 − 6n

= pα + n2 − 6n

= n+ n2 − 6n.

Therefore, the result holds.
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Theorem 8. Let n = pα1
1 . . . p

αk
k where α ≥ 2 and p ≥ 5. Then

E(L(Xn)) = n2 − 5kn.

Proof. Similar to the proof from Theorem 3 and using Corollary 1 and Lemma 3,

we get

E(L(Xn)) = E(L(Xp
α1
1

))E(L(Xp
α2
2

)) . . . E(L(Xp
αk
k

)).

By applying Theorem 7 in the above relation, we have

E(L(Xn)) =
(

(pα1
1 )2 − 5pα1

1

)(
(pα2

2 )2 − 5pα2
2

)
· · ·
(

(pαkk )2 − 5pαkk

)
= pα1

1 . . . pαkk

( k∏
i=1

(
pαii − 5

))
= n

( k∏
i=1

pαii −
k∏
i=1

5
)

= n
(
n− 5k

)
.

Acknowledgements: The present study was supported by Golestan University,

Gorgan, Iran (research number: 1648). The author truly appreciates Golestan

University for this support. The author is grateful to the referees for their valuable

comments and suggestions to improve the quality of the paper.

Conflict of Interest: The authors declare that they have no conflict of interest.

Data Availability: Data sharing is not applicable to this article as no datasets were

generated or analyzed during the current study.

References
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