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Abstract: The reciprocal distance Laplacian matrix of a connected graph G is de-

fined as RDL(G) = RTr(G)−RD(G), where RTr(G) is the diagonal matrix whose i-th

element RTr(vi) =
∑
i 6=j∈V (G)

1
dij

and RD(G) is the Harary matrix. RDL(G) is a

real symmetric matrix and we denote its eigenvalues as λ1(RDL(G)) ≥ λ2(RDL(G)) ≥
· · · ≥ λn(RDL(G)). The largest eigenvalue λ1(RDL(G)) of RDL(G) is called the re-

ciprocal distance Laplacian spectral radius. In this paper, we obtain upper bounds for
the reciprocal distance Laplacian spectral radius. We characterize the extremal graphs

attaining this bound.

Keywords: distance Laplacian matrix, reciprocal distance Laplacian matrix, Harary

index; reciprocal distance Laplacian eigenvalues, reciprocal distance Laplacian spectral
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1. Introduction

Let G = (V,E) be a simple connected graph with n vertices and let V (G) =

{v1, v2, . . . , vn} be the set of vertices in G. The degree of a vertex v, denoted by

d(v), is the number of edges incident to the vertex v. A complete bipartite graph

with cardinalities of the vertex sets in two parts as p and q is denoted by Kp,q. A

graph G is called a split graph if its vertex set V (G) can be partitioned into sets K

and S such that the induced graph on K is a clique and S is an independent set

(stable set). A split graph is said to be complete if there is an edge from each vertex

of K to every vertex of S. The complete split graph is denoted by CS(n,α). For other

notations see [4].
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2 On the reciprocal distance Laplacian spectral radius of graphs

The adjacency matrix of a graph G is n × n matrix whose rows and columns are

indexed by vertices and is defined as A(G) = (aij), where

aij =

1, if there is an edge from vi to vj ,

0, otherwise.

For a graph G, the Laplacian matrix is defined as L(G) = Deg(G) − A(G), where

Deg(G) = diag(d1, d2, . . . , dn) is the diagonal matrix of the vertex degrees. The

Laplacian matrix is a real symmetric positive semi-definite matrix. The eigen-

values of L(G) are called the Laplacian eigenvalues of G, which are denoted by

µ1(G), µ2(G), . . . , µn(G) and are arranged as µ1(G) ≥ µ2(G) ≥ · · · ≥ µn(G). The

distance between a pair of vertices vi and vj is defined as the length of a shortest path

between vi and vj and is denoted by dG(vi, vj) or di,j . The diameter of G, denoted

by d(G), is the largest distance between any two vertices of G. The distance matrix

of G is denoted by D(G) and is defined as D(G) = (d(vi, vj))vi,vj∈V (G).

The transmission or the total distance TrG(vi) (or briefly Tri if graph G is under-

stood) of a vertex vi is defined as the sum of the distances from vi to all other vertices

in G, that is,

TrG(vi) =
∑

vj∈V (G)

d(vi, vj).

The total reciprocal distance of a vertex v is defined as

RHG(v) =
∑

u∈V (G)

1

dG(u, v)
, u 6= v.

Let Tr(G) = diag(Tr1, T r2, . . . , T rn) be the diagonal matrix of vertex transmissions

of G. In [2], Aouchiche and Hansen introduced the Laplacian for the distance matrix

of a connected graph. The matrix DL = Tr(G)−D(G) is called the distance Laplacian

matrix of G.

The Harary matrix of a graph G, which is also called as the reciprocal distance matrix,

denoted by RD(G), is defined as [6]

RDij(G) =

{
1

d(vi,vj)
, if i 6= j,

0, if i = j.

The Harary index of G is

H(G) =
1

2

n∑
i=1

n∑
j=1

RDi,j(G) =
∑
i<j

1

di,j
.
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Clearly,

H(G) =
1

2

∑
vi∈V (G)

RTrG(vi),

where RTrG(vi) is the reciprocal distance degree of a vertex vi and is defined as

RTrG(vi) =
∑

vj∈V (G)vi 6=vj

1

dG(vi, vj)
.

In [3], Bapat and Panda defined the reciprocal distance Laplacian matrix as

RDL(G) = RT (G) − RD(G). Since the sum of each row of RDL(G) is zero, it

follows that 0 is an eigenvalue of RDL(G). Also the reciprocal distance Laplacian

matrix RDL(G) is a real symmetric and positive semidefinite matrix, we denote the

eigenvalues of RDL(G) as

λ1(RDL(G)) ≥ λ2(RDL(G)) ≥ · · · ≥ λn(RDL(G)) = 0.

We will denote the spectral radius of RDL(G) by λ(G) = λ1(RDL(G)), called the

reciprocal distance Laplacian spectral radius. As 0 is always a simple eigenvalue of

the reciprocal distance Laplacian matrix, we define the reciprocal distance Laplacian

spread of a connected graph G as

RDLS(G) = λ1(RDL(G))− λn−1(RDL(G)),

where λ1(RDL(G)) and λn−1(RDL(G)) are, respectively, the largest and the second

smallest reciprocal distance Laplacian eigenvalues of G. Some recent work on this

topic can be seen in [1, 5].

The rest of the paper is organized as follows. In Section 2, we obtain upper bounds for

the first two largest reciprocal distance Laplacian eigenvalues. In Section 3, we find

upper bound for the reciprocal distance Laplacian spectral radius λ1(RDL(G)) for

bipartite graphs. We also provide the sufficient conditions under which these bounds

can be obtained.

2. Upper bound for the first two largest reciprocal distance
Laplacian eigenvalues

Let M be a complex matrix of order n described in the following block form

M =


M11 . . . M1t

. . .

. . .

Mt1 . . . Mtt


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where the blocks Mij are ni×nj matrices for any 1 ≤ i, j ≤ t and n = n1+n2+· · ·+nt.
For 1 ≤ i, j ≤ t, let bij denote the average row sum of Mij . Then B(M) = (bij) (or

simply B) is called the quotient matrix of M . The following lemmas will be used in

the sequel.

Lemma 1. [8] Let M be the matrix as defined above such that Mij = sijJni,nj for i 6= j
and Mii = siiJni,ni + piIni . Then the equitable quotient matrix of M is B = (bij) with
bij = sijnj , if i 6= j and bii = siini + pi. Moreover,

σ(M) = σ(B) ∪ {pn1−1
1 , pn2−1

2 . . . , pnt−1
t },

where ni − 1 denotes the multiplicity of eigenvalue pi .

Lemma 2. [3] Let G be a connected graph on n vertices with m ≥ n edges and let
G′ = G − e be the connected graph obtained from G by deletion of an edge e. Then
λi(RD

L(G)) ≥ λi(RDL(G′)) for all i = 1, 2 . . . , n.

Lemma 3. [7] Let X and Y be two n×n Hermitian matrices. Suppose that Z = X +Y ,
and we arrange the eigenvalues of a matrix by λ1 ≥ λ2 ≥ · · · ≥ λn. Then the following
inequalities hold true:

λk(Z) ≤ λj(X) + λk−j+1(Y ), n ≥ k ≥ j ≥ 1,

λk(Z) ≥ λj(X) + λk−j+n(Y ), n ≥ j ≥ k ≥ 1.

Here, λi is the i-th largest eigenvalue of a given matrix. In any of these inequalities above,
equality is attained if and only if there exists a unit eigenvector associated with each of the
three eigenvalues involved.

Before we proceed, we have the following lemmas in matrix theory that will address

the problem of obtaining the extremal graphs for which the bound can be achieved.

Lemma 4. Let A = (aij) be matrix of order n such that aii = −
∑n
i6=j=1 aij and

aks = −1, k 6= s, k = 1, 2, . . . , n, and asl = −1, l 6= s, l = 1, 2, . . . , n, then n is an eigenvalue
of matrix A with corresponding eigenvector (−1,−1, . . . , n− 1︸ ︷︷ ︸

s-th

, . . . ,−1)t.

Proof. The matrix A can be written as

A =



−(a12 + · · · − 1 + · · ·+ a1n) . . . −1 . . . a1n
a21 . . . −1 . . . a2n
. . . . . . . . . . . . . . .

−1 . . . n− 1 . . . −1

. . . . . . . . . . . . . . .

an1 . . . −1 . . . −(an1 + · · · − 1 + · · ·+ an.n−1)


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Now consider the vector x = (−1,−1, . . . , n− 1︸ ︷︷ ︸
s-th

, . . . ,−1)t. We have

Ax =



−n
−n
. . .

n(n− 1)

. . .

−n


= n



−1

−1

. . .

(n− 1)

. . .

−1


= nx.

This shows that n is an eigenvalue of A with corresponding eigenvector

x = (−1,−1, . . . , n− 1︸ ︷︷ ︸
s-th

, . . . ,−1)t. This completes the proof.

Lemma 5. Let A = (aij) be matrix of order n such that aii = −
∑n
i 6=j=1 aij and there

exist s,m, s 6= m such that 1 ≤ s,m ≤ n satisfying aks = −1, k 6= s, k = 1, 2, . . . , n,
and asl = −1, l 6= s, l = 1, 2, . . . , n, and apm = −1,m 6= p, p = 1, 2, . . . , n, and
amq = −1, l 6= s, q = 1, 2, . . . , n. Then n is an eigenvalue of the matrix A with alge-
braic multiplicity at least two and corresponding eigenvectors (−1,−1, . . . , n− 1︸ ︷︷ ︸

s-th

, . . . ,−1)t

and (−1,−1, . . . , n− 1︸ ︷︷ ︸
m-th

, . . . ,−1)t.

Proof. Proceeding as in Lemma 4, we observe that (−1,−1, . . . , n− 1︸ ︷︷ ︸
s-th

, . . . ,−1)t and

(−1,−1 . . . , n− 1︸ ︷︷ ︸
m-th

, . . . ,−1)t are two linearly independent eigenvectors of A corre-

sponding to the eigenvalue n. Therefore the geometric multiplicity of n is at least

two. Since the algebraic multiplicity is always greater than or equal to geometric

multiplicity, so n will be an eigenvalue of algebraic multiplicity at least two.

The following theorem gives an upper bound for the reciprocal distance spectral radius

and sufficient condition to obtain the equality.

Theorem 1. Let G be a connected graph of order n ≥ 3 with at least two non-pendant
vertices. Then λ1(RDL(G)) ≤ n. Moreover, if G has at least one vertex of degree n− 1, the
equality holds.

Proof. Let V = {v1, v2, . . . , vn} be the vertex set of G. Assume that G has a vertex

say vi of degree n − 1. This implies that all the non-diagonal entries of the ith row

and the ith column of RDL(G) will be −1 and the ith diagonal element dii will be

n − 1. So the matrix RDL(G) will be of the same form as that of matrix A defined

in Lemma 4. Therefore, by Lemma 4, n is an eigenvalue of RDL(G). So the equality

occurs in this case.

Let H be the graph obtained from G by deleting an edge incident at vi and some
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non-pendant vertex vi+1. Clearly the graph H is connected and has no vertex of

degree n− 1. Using Lemma 2 , we have λ1(RDL(H)) ≤ λ1(RDL(G)).

The requirement of a vertex of degree n − 1 is only a sufficient condition to have a

reciprocal distance Laplacian eigenvalue n. For example, the complete bipartite graph

K2,2 has one reciprocal distance Laplacian eigenvalue 4, but has no vertex of degree

3. In Lemma 7, we have proved that every complete bipartite graph Kp,q has one

eigenvalue n.

The requirement of two non-pendant vertices in Theorem 1 can be relaxed. All we

need is a vertex of degree n− 1. In the next theorem, we show that if the graph has

a vertex of degree n− 1, then n is a Laplacian reciprocal distance eigenvalue. But for

this we need the following lemma.

Lemma 6. The reciprocal distance Laplacian spectrum of a complete split graph CS(n, α),
α ≤ n− 1, is {(n− α

2
)α−1, nn−α, 01}.

Proof. Let V = {v1, v2, . . . , vα, . . . , vn} be the vertex set of CS(n, α) and V1 =

{v1, v2, . . . , vα} be the set of the vertices in its largest independent set. Therefore the

reciprocal distance Laplacian matrix of CS(n, α) is

RDL(CS(n, α)) =

(
((n− α

2 )I − 1
2J)α×α −Jα×n−α

−Jn−α×α (nI − J)n−α×n−α

)
.

Therefore, by Lemma 1, σ(RDL(CS(n, α))) = {(n− α
2 )α+1, nn−(α−1)}∪σ(B), where

B =

(
n− α −n+ α

−α α

)
.

By direct calculations, we see that the eigenvalues of B are 0 and n. There-

fore the complete reciprocal distance Laplacian spectrum of CS(n, α) is {(n −
α
2 )α−1, nn−α, 01}.

Theorem 2. Let G be a connected graph of order n ≥ 3. Then λ1(RDL(G)) ≤ n if G
has at least one vertex of degree n− 1 and n is a reciprocal distance Laplacian eigenvalue of
G.

Proof. We consider the following two cases.

Case (i). If G has at least two non-pendant vertices, then the result follows by

Theorem 1.

Case (ii). If G has only one non-pedant vertex, then the only possible connected

graph in this case is CS(n, n− 1) ∼= Kn−1,1. By substituting α = n− 1 in Lemma 6,

we get the required result.
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The following theorem gives an upper bound for the second largest reciprocal distance

Laplacian eigenvalue and the sufficient condition for obtaining the bound.

Theorem 3. If G is a connected graph of order n ≥ 3 with at least two non-pendant
vertices, then λ2(RD(G)) ≤ n. If G has at least two vertices of degree n−1, then the equality
holds.

Proof. Let V = {v1, v2, . . . , vn} be the vertex set of G and assume that G has two

vertices, say vi and vk, of degree n− 1. This implies that all the non-diagonal entries

of ith and kth row and ith and kth column of the Laplacian reciprocal distance matrix

RD(G) will be −1. Also, the ith and kth diagonal element dii and dkk will be n− 1.

Therefore, the matrix RDL(G) will be of the same form as that of matrix A, which

we constructed in Lemma 5. Therefore, by Lemma 5, n is an eigenvalue of RD(G) of

multiplicity at least two. Thus, λ2(RDL(G)), and so the equality occurs in this case.

Now, assume that vi and vk are the only vertices of degree n− 1 in G. Let H be the

graph obtained from G by deleting an edge incident at vi or vk. Clearly, the graph

H is connected. Using Lemma 2, we have λ2(RDL(H)) ≤ λ2(RDL(G)).

Figure 1. Graph G

The requirement of at least two vertices of degree n− 1 is only a sufficient condition.

The reciprocal Laplacian distance spectrum of the graph G in Figure 1 is {52, 22, 0}.
In fact, the second reciprocal Laplacian distance eigenvalue can be n even if the graph

has no vertex of degree n− 1.

In the next theorem, we obtain a lower bound for the second smallest reciprocal

distance Laplacian eigenvalue λn−1 of graph having at least one vertex of degree

n− 1.

Theorem 4. Let G be a connected graph of order n ≥ 3 with at least one vertex of degree
n− 1. Then λn−1(RD(G)) ≥ n+1

2
. If G ∼= Kn−1,1 then the equality holds.

Proof. If G′ is the graph obtained from G by adding an edge between a pair of non-

adjacent vertices in G, then from Lemma 2, we have λi(RD
L(G′)) ≥ λi(RD

L(G)).

With this observation, we start with the graph having a vertex of degree n − 1

and having minimum number of edges, that is Kn−1,1. From Lemma 6, we get

λn−1RD
L(Kn−1,1) = n+1

2 . Therefore, by Lemma 2, the result follows.
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We now find an upper bound for the reciprocal distance Laplacian spread of a con-

nected graph G.

Theorem 5. Let G be a connected graph of order n ≥ 3 with at least one vertex of degree
n− 1. Then RDLS(G) ≤ n−1

2
. If G ∼= Kn−1,1 then the equality holds.

Proof. Since G has a vertex of degree n − 1, therefore from Theorems 1 and 4, we

have λ1RD
L(G) = n and λn−1RD

L(G) ≥ n+1
2 . Now, we have

λ1RD
L(G)− λn−1RDL(G) ≤ n− n+ 1

2
=
n− 1

2
.

3. Upper bound for the reciprocal distance Laplacian spectral
radius of bipartite graphs

In this section, we obtain the complete characterization of bipartite graphs having the

largest reciprocal distance Laplacian spectral radius n. We obtain the necessary and

sufficient condition for a bipartite graph to have reciprocal distance Laplacian spectral

radius n. The following lemma gives the reciprocal distance Laplacian spectrum of a

complete bipartite graph.

Lemma 7. The reciprocal distance Laplacian spectrum of a complete bipartite graph Kp,k

with p+ k = n is {(k + p
2
)p−1, (p+ k

2
)k−1, n, 0}.

Proof. The reciprocal distance Laplacian matrix of Kp,k, p+ k = n, is

RDL(Kp,k) =

(
((k + p

2 )I − 1
2J)p×p −Jp×k

−Jk×p ((k + p
2 )I − 1

2J)k×k

)
.

Then, by Lemma 1, σ(RDL(Kp,k)) = {(k + p
2 )p−1, (p+ k

2 )k−1} ∪ σ(B), where

B =

(
k −k
−p p

)
.

Therefore, by Lemma 1, the reciprocal distance Laplacian spectrum of RDL(Kp,k) is

{(k + p
2 )p−1, (p+ k

2 )k−1}, n, 0}.

The following theorem gives an upper bound for the reciprocal distance Laplacian

spectral radius of a bipartite graph and the extremal graph for the equality.

Theorem 6. Let G be a bipartite graph of order n with p and q vertices in its independent
sets. Then λ1(RDL(G)) ≤ n with equality if and only if G ∼= Kp,q.
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Proof. Case (i). If p = 1 or q = 1, then the only possible bipartite graph in this

case is Kn−1,1. Then, by Lemma 6, n is a reciprocal distance Laplacian eigenvalue

of Kn−1,1. So the equality always holds in this case.

Case (ii). If G ∼= Kp,q, p ≥ 2 and q ≥ 2, then by Lemma 7, n is an eigenvalue of

multiplicity 1, so the equality holds in this case. Let H be the graph obtained from

Kp,q by deleting an edge. Clearly, H is always connected, because p ≥ 2 and q ≥ 2.

Using Lemma 2, we have λ1(RDL(H)) ≤ λ1(RDL(Kp,q)). So it only remains to

show that λ1(RDL(H)) < n. We have the following relation between the Laplacian

reciprocal distance matrices of Kp,q and H.

RDL(H) = RDL(Kp,q)+

0p−1×p−1 0p−1×2 0p−1×q−1
02×p−1 M2×2 02×q−1
0q1×p−1 0q−1×2 0q−1×q−1

 = RDL(Kp,q) + Y,

where M =

(
− 2

3
2
3

2
3 − 2

3

)
and Y =

0p−1×p−1 0p−1×2 0p−1×q−1
02×p−1 M2×2 02×q−1

0q−1×p−1 0q−1×2 0q−1×q−1

 = RDL(G) + Y

Using Lemma 3, it follows that λ1(RDL(H)) ≤ λ1(RDL(G) + λ1(Y ). Clearly, it can

be seen that − 4
3 and 0n−1 are eigenvalues of Y . By substituting λ1(Y ) = 0, we have

λ1(RDL(H)) ≤ λ1(RDL(Kp,q) = n. (3.1)

By Lemma 3, equality in above is possible if and only if there exists a com-

mon unit eigenvector x for the eigenvalues λ1(RDL(H)), n and 0 of the matrices

RDL(H), RDL(Kp,q)) and Y respectively. We can see that any eigenvector of Y

corresponding to the eigenvalue 0 should have pth and (p+1)th coordinate same. But

the eigenvector of RDL(Kp,q) corresponding to n is

x =

(
− k

p
,−k

p
, . . . ,−k

p
, 1, . . . , 1

)t
,

which has −kp at the pth place and 1 at the (p+ 1)th place. Since n is a simple eigen-

value of RDL(Kp,q), so every eigenvector corresponding to n is a scalar multiple of x.

Therefore no common unit eigenvector is possible corresponding to these eigenvalues.

This completes the proof.

In this theorem, we find the relationship between reciprocal distance Laplacian eigen-

values of K ′p+1,q−1 and Kp,q, where K ′p+1,q−1 is the complete bipartite graph obtained

from Kp,q by shifting one vertex from one independent set to another.

Theorem 7. Let Kp,q with p ≥ q, be a complete bipartite graph of order n and K′p+1,q−1

be a complete bipartite graph obtained from Kp,q by shifting a vertex from one independent
set to other. Then λi(RD(K′p+1,q−1)) > λi(RD

L(Kp,q)), for i = 2, 3 . . . , q − 1.
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Proof. Let V1 = {v1, v2, . . . , vp} and V2 = {vp+1, vp+2, . . . , vn} be the indepen-

dent set of vertices in Kp,q and p ≥ q. Let V ′1 = {v′1, v′2, . . . , v′p, v′p+1} and

V ′2 = {v′p+2, . . . , v
′
n} be independent set of vertices in K ′p+1,q−1 obtained from the

vertex set of Kp,q by shifting a vertex from V2 to V1. Then from Lemma 7, the recip-

rocal distance Laplacian spectrum of K ′p+1,q−1 is ({k + p+1
2 )p, ({p + p−1

2 })
q−2, n, 0}.

Now comparing the spectrum of both the complete graphs as obtained in Lemma 7,

we get the required result.
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