A note on graphs with integer Sombor index

Document Type : Short notes

Author

School of Mathematical Sciences , Universiti Sains Malaysia, 11800 Penang, Malaysia

Abstract

For a graph $G$, the Sombor index of $G$ is defined as $ SO(G)=\sum_{uv\in E(G)} \sqrt{\deg(u)^2+\deg(v)^2}$, where $\deg(u)$ is referring to the degree of vertex $u$ in $G$. In this paper, we present a construction, namely $R_k$-construction which produce infinitely many families of graphs whose Sombor indices are integers.

Keywords

Main Subjects


[1] A. Aashtab, S. Akbari, S. Madadinia, M. Noei, and F. Salehi, On the graphs with minimum Sombor index, MATCH Commun. Math. Comput. Chem. 88 (2022), no. 3, 553–559.
https://doi.org/10.46793/match.88-3.553A
[2] T. Došlić, T. Réti, and A. Ali, On the structure of graphs with integer Sombor indices, Discrete Math. Lett. 7 (2021), 1–4.
https://doi.org/10.47443/dml.2021.0012
[3] I. Gutman, Geometric approach to degree-based topological indices: Sombor indices, MATCH Commun. Math. Comput. Chem. 86 (2021), no. 1, 11–16.
[4] I. Gutman, N.K. Gürsoy, A. Gürsoy, and A. ¨Ulker, New bounds on Sombor index, Commun. Comb. Optim. 8 (2023), no. 2, 305–311.
https://doi.org/10.22049/cco.2022.27600.1296
[5] B. Horoldagva and C. Xu, On Sombor index of graphs, MATCH Commun. Math. Comput. Chem. 86 (2021), 703–713.
[6] S. Kosari, N. Dehgardi, and A. Khan, Lower bound on the KG-Sombor index, Commun. Comb. Optim. 8 (2023), no. 4, 751–757.
https://doi.org/10.22049/cco.2023.28666.1662
[7] M.R. Oboudi, Non-semiregular bipartite graphs with integer Sombor index, Discrete Math. Lett. 8 (2022), 38–40.
https://doi.org/10.47443/dml.2021.0107
[8] M.R. Oboudi, On graphs with integer Sombor index, J. Appl. Math. Comput. 69 (2023), no. 1, 941–952.
https://doi.org/10.1007/s12190-022-01778-z
[9] H.S. Ramane, I. Gutman, K. Bhajantri, and D.V. Kitturmath, Sombor index of some graph transformations, Commun. Comb. Optim. 8 (2023), no. 1, 193–205.
https://doi.org/10.22049/cco.2021.27484.1272
[10] M.S. Reja and M.A. Nayeem, On Sombor index and graph energy, MATCH Commun. Math. Comput. Chem. 89 (2023), no. 2, 451–466.
https://doi.org/10.46793/match.89-2.451R
[11] T. Réti, T. Došlić, and A. Ali, On the Sombor index of graphs, Contrib. Math. 3 (2021), 11–18.
https://doi.org/10.47443/cm.2021.0006
[12] M. Sepehr and N. Jafari Rad, On graphs with integer sombor indices, Commun. Comb. Optim. (2023), In press.
https://doi.org/10.22049/cco.2023.28334.1510