New bounds on distance Estrada index of graphs

Document Type : Original paper

Author

Department of Mathematics, College of Sciences, Shiraz University, Shiraz, 71457-44776, Iran

Abstract

For a connected graph $G$ with vertex set $\{v_1,\ldots,v_n\}$, the distance matrix of $G$, denoted by $D(G)$, is an $n\times n$ matrix with zero main diagonal, such that its $(i,j)$-entry is $d(v_i,v_j)$, where $i\neq j$ and $d(v_i,v_j)$ is the distance between $v_i$ and $v_j$. Let $\theta_1,\ldots,\theta_n$ be the eigenvalues of $D(G)$. The distance Estrada index of $G$ is defined as $DEE(G)=\sum_{i=1}^ne^{\theta_i}$. In this paper we find some new sharp bounds for the distance Estrada index of graphs. Our results improve the previous bounds on the distance Estrada index of graphs.

Keywords

Main Subjects


[1] Ş.B. Bozkurt, C. Adiga, and D. Bozkurt, Bounds on the distance energy and the distance estrada index of strongly quotient graphs, J. Appl. Math. 2013 (2013), Article ID: 681019.
http://doi.org/10.1155/2013/681019
[2] D.M. Cvetković, M. Doob, and H. Sachs, Spectra of Graphs: Theory and Application, Academic Press, New York, 1980.
[3] E. Estrada, Characterization of 3D molecular structure, Chemical Physics Letters 319 (2000), no. 5-6, 713–718.
https://doi.org/10.1016/S0009-2614(00)00158-5
[4] E. Estrada, Characterization of the folding degree of proteins, Bioinformatics 18 (2002), no. 5, 697–704.
https://doi.org/10.1093/bioinformatics/18.5.697
[5] E. Estrada, Topological structural classes of complex networks, Phys. Rev. E 75 (2007), no. 1, Article ID: 016103.
https://doi.org/10.1103/PhysRevE.75.016103
[6] E. Estrada, The many facets of the Estrada indices of graphs and networks, SeMA Journal 79 (2022), no. 1, 57–125.
https://doi.org/10.1007/s40324-021-00275-w
[7] E. Estrada and J.A. Rodríguez-Velázquez, Subgraph centrality in complex networks, Phys. Rev. E 71 (2005), no. 5, Article ID: 056103.
https://doi.org/10.1103/PhysRevE.71.056103
[8] A.D. Güngör and Ş.B. Bozkurt, On the distance Estrada index of graphs, Hacet. J. Math. Stat. 38 (2009), no. 3, 277–283.
[9] M.R. Oboudi, Distance spectral radius of complete multipartite graphs and majorization, Linear Algebra Appl. 583 (2019), 134–145.
https://doi.org/10.1016/j.laa.2019.08.021
[10] M.R. Oboudi, A new lower bound for the energy of graphs, Linear Algebra Appl. 580 (2019), 384–395.
https://doi.org/10.1016/j.laa.2019.06.026
[11] M.R. Oboudi, A relation between the signless Laplacian spectral radius of complete multipartite graphs and majorization, Linear Algebra Appl. 565 (2019), 225–238.
https://doi.org/10.1016/j.laa.2018.12.012
[12] M.R. Oboudi, On the Seidel Estrada index of graphs, Linear Multilinear Algebra (2023), In press.
https://doi.org/10.1080/03081087.2023.2192459
[13] M.R. Oboudi, Reverse Wiener spectral radius of trees, Linear Multilinear Algebra 71 (2023), no. 2, 256–264.
https://doi.org/10.1080/03081087.2021.2025199
[14] Y. Shang, Estimating the distance Estrada index, Kuwait J. Sci. 43 (2016), no. 3, 14–19.