[1] V.P. Berman and G.E. Naumov, Preference-relation with interval value tradeoffs in criterion space, Autom. Remote Control 50 (1989), no. 3, 398–410.
[2] S. Dempe, G. Eichfelder, and J. Fliege, On the effects of combining objectives in multi-objective optimization, Math. Methods Oper. Res. 82 (2015), 1–18.
[4] M. Farina and P. Amato, On the optimal solution definition for many-criteria optimization problems, 2002 annual meeting of the North American fuzzy information processing society proceedings. NAFIPS-FLINT 2002 (Cat. No. 02TH8622), IEEE, 2002, pp. 233–238.
https://doi.org/10.1109/NAFIPS.2002.1018061
[5] B.J. Hunt, M.M. Wiecek, and C.S. Hughes, Relative importance of criteria in multiobjective programming: A cone-based approach, European J. Oper. Res. 207 (2010), no. 2, 936–945.
https://doi.org/10.1016/j.ejor.2010.06.008
[7] A. Mahmodinejad and D. Foroutannia, Generalized rationnal efficiency in multiobjective programming, UPB Sci. Bull. A: Appl. Math. Phys. 78 (2016), no. 1, 135–146.
[8] B. Malakooti, A decision support system and a heuristic interactive approach for solving discrete multiple criteria problems, IEEE Trans. Syst. Man. Cybern. 18 (1988), no. 2, 273–284.
https://doi.org/10.1109/21.3466
[9] J. Molina, L.V. Santana, A.G. Hernández-DÍaz, C.A.C. Coello, and R. Caballero, -dominance: Reference point based dominance for multiobjective metaheuristics, European J. Oper. Res. 197 (2009), no. 2, 685–692.
https://doi.org/10.1016/j.ejor.2008.07.015
[10] V.D. Noghin, Relative importance of criteria: a quantitative approach, J. MultiCriteria Decis. Anal. 6 (1997), no. 6, 355–363.
[11] V.D. Noghin, What is the relative importance of criteria and how to use it in mcdm, Multiple Criteria Decision Making in the New Millennium: Proceedings of the Fifteenth International Conference on Multiple Criteria Decision Making (MCDM) Ankara, Turkey, July 10–14, 2000, Springer, 2001, pp. 59–68.
https://doi.org/10.1007/978-3-642-56680-6_5
[12] S. Petchrompo, D.W. Coit, A. Brintrup, A. Wannakrairot, and A.K. Parlikad, A review of pareto pruning methods for multi-objective optimization, Comput. Ind. Eng. 167 (2022), Article ID: 108022.
https://doi.org/10.1016/j.cie.2022.108022
[13] S. Petchrompo, A. Wannakrairot, and A.K. Parlikad, Pruning Pareto optimal solutions for multi-objective portfolio asset management, European J. Oper. Res. 297 (2022), no. 1, 203–220.
https://doi.org/10.1016/j.ejor.2021.04.053
[14] V.V. Podinovskii, Quantitative importance of criteria, Autom. Remote Control 61 (2000), 817–828.
[15] R.E. Steuer, Multiple Criteria Optimization: Theory, Computation, and Application, Wiley, New York, 1986.
[17] J.B. Yang, Multiple criteria decision analysis methods and applications, Hunan Publishing House, Changsha, PR China, 1996, 1996.
[19] E. Zio, P. Baraldi, and N. Pedroni, Optimal power system generation scheduling by multi-objective genetic algorithms with preferences, Reliab. Eng. Syst. Saf. 94 (2009), no. 2, 432–444.
https://doi.org/10.1016/j.ress.2008.04.004
[20] E. Zio and R. Bazzo, A clustering procedure for reducing the number of representative solutions in the Pareto front of multiobjective optimization problems, European J. Oper. Res. 210 (2011), no. 3, 624–634.
https://doi.org/10.1016/j.ejor.2010.10.021