[1] B.S. Anand, U. Chandran S.V., M. Changat, S. Klavžar, and E.J. Thomas, Characterization of general position sets and its applications to cographs and bipartite graphs, Appl. Math. Comput. 359 (2019), 84–89.
https://doi.org/10.1016/j.amc.2019.04.064
[2] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications, American Elsevier Publishing Company, North-Holland, 1976.
[3] U. Chandran S.V. and G.J. Parthasarathy, The geodesic irredundant sets in graphs, Int. J. Math. Combin. 4 (2016), 135–143.
[5] S. Cicerone, G. Di Stefano, and S. Klavžar, On the mutual visibility in cartesian products and triangle-free graphs, Appl. Math. Comput. 438 (2023), Article ID: 127619.
https://doi.org/10.1016/j.amc.2022.127619
[7] G. Di Stefano, S. Klavžar, A. Krishnakumar, J. Tuite, and I. Yero, Lower general position sets in graphs, Discuss. Math. Graph Theory (2023), In press.
[8] H.E. Dudeney, Amusements in Mathematics, Nelson, Edinburgh, 1917.
[9] G. Erskine, personal communication, (2023).
[10] M. Gardner, Mathematical games: combinatorial problems, some old, some new and all newly attacked by computer, Sci. Amer 235 (1976), no. 4, 131–137.
[11] M. Ghorbani, H.R. Maimani, M. Momeni, F. Rahimi Mahid, S. Klavžar, and G. Rus, The general position problem on kneser graphs and on some graph operations, Discuss. Math. Graph Theory 41 (2021), no. 4, 1199–1213.
https://doi.org/10.7151/dmgt.2269
[12] W. Imrich, S. Klavžar, and D.F. Rall, Topics in Graph Theory. Graphs and their Cartesian Product, CRC Press, 2008.
[18] P.K. Neethu, S.V. Ullas Chandran, and J. Tuite, On monophonic position sets in cartesian products, preprint.
[21] J. Tian and K. Xu, The general position number of cartesian products involving a factor with small diameter, Appl. Math. Comput. 403 (2021), Article ID: 126206.
https://doi.org/10.1016/j.amc.2021.126206