[1] A.Y. Alfakih, Euclidean Distance Matrices and Their Applications in Rigidity Theory, Springer, Cham, 2018.
[6] M.M. Deza, M. Laurent, and R. Weismantel, Geometry of Cuts and Metrics, Springer, Verlag Berlin, 1997.
[9] G. Indulal and I. Gutman, On the distance spectra of some graphs, Math. Commun. 13 (2008), 123–131.
[10] G. Indulal and I. Gutman, On euclidean distance matrices of graphs, Electron. J. Linear Algebra 26 (2013), 574–589.
[11] W. Irawan and K.A. Sugeng, Quadratic embedding constants of hairy cycle graphs, Journal of Physics: Conference Series, 1722 (2021), no. 1, Article ID: 012046.
[13] J.H. Koolen and S.V. Shpectorov, Distance-regular graphs the distance matrix of which has only one positive eigenvalue, European J. Combin. 15 (1994), no. 3, 269–275.
https://doi.org/10.1006/eujc.1994.1030
[14] L. Liberti, C. Lavor, N. Maculan, and A. Mucherino, Euclidean distance geometry and applications, SIAM Rev. 56 (2014), no. 1, 3–69.
https://doi.org/10.1137/120875909
[23] M. Purwaningsih and K.A. Sugeng, Quadratic embedding constants of squid graph and kite graph, Journal of Physics: Conference Series, vol. 1722, IOP Publishing, 2021, p. Article ID: 012047.
[25] I.J. Schoenberg, Remarks to maurice frechet’s article“sur la definition axiomatique d’une classe d’espace distances vectoriellement applicable sur l’espace de hilbert, Ann. Math. 36 (1935), no. 3, 724–732.
[26] I.J. Schoenberg, Metric spaces and positive definite functions, Trans. Amer. Math. Soc. 44 (1938), no. 3, 522–536.
[27] J.L. Szwarcfiter, A Survey on Clique Graphs, in “Recent Advances in Algorithms and Combinatorics” (B.A. Reed and C.L. Sales, eds.), Springer New York, New York, NY, 2003, pp. 109–136.