[1] O. Aichholzer, R. Fabila-Monroy, A. Fuchs, C. Hidalgo-Toscano, I. Parada, B. Vogtenhuber, and F. Zaragoza, On the 2-Colored Crossing Number, Graph Drawing and Network Visualization (Cham) (D. Archambault and C.D. Tóth, eds.), Springer International Publishing, 2019, pp. 87–100.
https://doi.org/10.1007/978-3-030-35802-0 7
[3] M. Chimani and T. Wiedera, An ILP-based proof system for the crossing number problem, 24th Annual European Symposium on Algorithms (ESA 2016) (Dagstuhl, Germany) (P. Sankowski and C. Zaroliagis, eds.), Leibniz Interna-
tional Proceedings in Informatics (LIPIcs), vol. 57, Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2016, pp. 29:1–29:13
https://doi.org/10.4230/LIPIcs.ESA.2016.29
[4] K. Clancy, M. Haythorpe, and A. Newcombe, A survey of graphs with known or bounded crossing numbers, Australas. J. Comb. 78 (2020), no. 2, 209–296.
[7] R.K. Guy, Crossing numbers of graphs, Graph Theory and Applications (Berlin, Heidelberg) (Y. Alavi, D. R. Lick, and A. T. White, eds.), Springer Berlin Heidelberg, 1972, pp. 111–124.
[8] C. Hernández-Vélez, C. Medina, and G. Salazar, The optimal drawing of $K_{5,n}$, Electron. J. Comb. 21 (2014), no. 4, Article Number: P4.1
https://doi.org/10.37236/2777
[12] M. Klešč, The crossing numbers of join of cycles with graphs of order four, Proc. Aplimat 2019: 18th Conference on Applied Mathematics (2019), 634–641.
[13] M. Klešč, D. Kravecová, and J. Petrillová, The crossing numbers of join of special graphs, Electr. Eng. Inform. 2 (2011), 522–527.
[14] M. Klešč, J. Petrillová, and M. Valo, On the crossing numbers of cartesian products of wheels and trees, Discuss. Math. Graph Theory 37 (2017), no. 2, 399–413.
https://doi.org/10.7151/dmgt.1957
[15] M. Klešč and Š. Schrötter, The crossing numbers of join products of paths with graphs of order four, Discuss. Math. Graph Theory 31 (2011), no. 2, 321–331.
https://doi.org/10.7151/dmgt.1548
[16] M. Klešč and Š. Schrötter, The crossing numbers of join of paths and cycles with two graphs of order five, Mathematical Modeling and Computational Science (Berlin, Heidelberg) (G. Adam, J. Buša, and M. Hnatič, eds.), Springer Berlin Heidelberg, 2012, pp. 160–167.
[17] M. Klešč and M. Staš, Cyclic permutations in determining crossing numbers, Discuss. Math. Graph Theory 42 (2022), no. 4, 1163–1183.
https://doi.org/10.7151/dmgt.2351
[19] M. Li, The crossing numbers of the join of a 5-vertex graph with vertex, path and cycle, J. Yangzhou Uni. Nat. Sci. Ed. 18 (2015), no. 1, 4–8.
[21] Z.D. Ouyang, J. Wang, and Y.Q. Huang, The crossing number of join of the generalized petersen graph $P(3, 1)$ with path and cycle, Discuss. Math. Graph Theory 38 (2018), no. 2, 351–370.
https://doi.org/10.7151/dmgt.2005
[27] M. Staš and M. Timková, The crossing numbers of join products of seven graphs of order six with paths and cycles, Carpathian J. Math. 39 (2023), no. 3, 727–743.
[29] Z. Su and Y. Huang, Crossing number of join of three 5-vertex graphs with $P_n$, App. Math. China 29 (2014), no. 2, 245–252.
[30] P. Turán, A note of welcome, J. Graph Theory 1 (1977), no. 1, 7–9.
[31] D.B. West, Introduction to Graph Theory, Prentice Hall, 2011.