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Abstract: A digraph D = (V,E) is k-transitive if for any directed uv-path of length

k, we have (u, v) ∈ E. In this paper, we study the structure of strong k-transitive
oriented graphs having large minimum in- or out-degree. We show that such oriented

graphs are extended cycles. As a consequence, we prove that Seymour’s Second Neigh-
borhood Conjecture (SSNC) holds for k-transitive oriented graphs for k ≤ 11. Also we

confirm Bermond–Thomassen Conjecture for k-transitive oriented graphs for k ≤ 11.

A characterization of k-transitive oriented graphs having a hamiltonian cycle for k ≤ 6
is obtained immediately.
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1. Introduction

A digraph D is an ordered pair of two disjoint sets (V,E), where V is non-empty and

E ⊂ V × V . The set V is called the vertex set of D and is denoted by V (D), while

E is called the arc set of D and is denoted by E(D). All the digraphs in this paper

are finite and without loops (i.e. V is finite and for all v ∈ V , we have (v, v) /∈ E).

An arc (u, v) of D is symmetric if (v, u) is also an arc of D. An oriented graph D

is an asymmetric digraph (with no symmetric arcs). We may write u → v and we

say that u dominates v, meaning that (u, v) ∈ E(D). We may write u 9 v if u does

not dominate v. The out-neighborhood of a vertex v, denoted N+
D (v), is defined as

N+
D (v) = {u ∈ V (D) : v → u}. The second out-neighborhood of v, denoted N++

D (v),

is defined as N++
D (v) = {w ∈ V (D)\N+

D (v) : ∃x ∈ N+
D (v), x→ w}. The out-degree of

v is d+D(v) = |N+
D (v)| and its second out-degree is d++

D (v) = |N++
D (v)|. Let δ+D (or δ+)

denote the minimum out-degree inD. Analogously, we define in-neighborhood, second

in-neighborhood, in-degree, second in-degree and minimum in-degree. We omit the
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subscript when it is clear from the context. A tournament is an oriented graph where

between any two vertices there is an arc. A regular n-tournament is a tournament on

n vertices where n is an odd integer and every vertex has in- and out-degree n−1
2 . A

vertex with out-degree 0 is called a sink. We denote by x0x1 . . . xk a directed x0xk-

path of length k and we may write x0 → x1 → · · · → xk. A directed k-cycle (Ck) is

denoted by x0 . . . xk−1x0, and we may write x0 → · · · → xk−1 → x0. Throughout this

paper, a path (respectively cycle) means a directed path (respectively cycle). For a

path or a cycle W = x0x1 . . . xk (the subscripts are taken modulo k if W is a cycle)

we denote by xiWxj the subpath of W from xi to xj ; that is xiWxj = xixi+1 . . . xj .

The length of a path (or a cycle) W is denoted by `(W ). An acyclic digraph is a

digraph with no cycle. An extended k-cycle, denoted by C[X0, . . . , Xk−1], is obtained

from a k-cycle C = x0 . . . xk−1x0 by replacing xi by an independent vertex set Xi for

all i ∈ {0, . . . , k − 1} such that every vertex in Xi dominates every vertex in Xi+1

(subscripts taken modulo k). Figure 1 provides an example of an extended 3-cycle.

Figure 1. An extended 3-cycle

A digraph is strongly connected (or strong) if for every pair of vertices u and v, there

exists a uv-directed path. A strong component of D is a maximal strong subdigraph

of D. The condensation of D is the digraph D∗ with V (D∗) equals to the set of all

strong components of D, and (S, T ) ∈ E(D∗) if and only if there is (s, t) ∈ E(D)

such that s ∈ S and t ∈ T . Clearly, D∗ is an acyclic digraph, and thus, it has a

vertex of out-degree zero and a vertex of in-degree zero. A terminal component of D

is a strong component T of D such that d+D∗(T ) = 0. An initial component of D is a

strong component I of D such that d−D∗(I) = 0.

A digraph D is called transitive if for any directed path x0x1x2 of length 2 in D, we

have (x0, x2) ∈ E(D). In 2012, Galena-Sánchez and Hernández-Cruz [19] introduced

the class of k-transitive digraphs as a generalization of transitive digraphs. We say

that D is a k-transitive digraph if for every u, v ∈ V (D), the existence of a directed

uv-path of length k implies (u, v) ∈ E(D). Since their introduction, k-transitive

digraphs have received a fair amount of attention (see [12]). Strong k-transitive

digraphs have been characterized for k ∈ {3, 4} by Hernández-Cruz [17, 18]. For

k > 4, there are no known structural characterizations for strong k-transitive digraphs.

However, there is some information about strong k-transitive digraphs for arbitrary

k. For instance, Hernández-Cruz and Montellano-Ballesteros [20] characterized strong
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k-transitive digraphs (general digraphs) having a cycle of length at least k.

Theorem 1. [20] Let k be an integer, k ≥ 2. Let D be a strong k-transitive digraph.
Suppose that D contains a directed cycle of length n such that the greatest common divisor
of n and k − 1 is equal to d and n ≥ k + 1. Then the following hold:

1. If d = 1, then D is a complete digraph (that is for all x, y ∈ V (D), we have x → y
and y → x).

2. If d ≥ 2, then D is either a complete digraph, a complete bipartite digraph, or an
extended d-cycle.

Theorem 2. [20] Let k be an integer, k ≥ 2. Let D be a strong k-transitive digraph of
order at least k+ 1. If D contains a directed cycle of length k, then D is a complete digraph.

For oriented graphs, we can easily reformulate Theorems 1 and 2 as the following

result.

Theorem 3. [20] Let k be an integer such that k ≥ 3. Let D be a strong k-transitive
oriented graph of order at least k + 1. If D contains a directed cycle of length greater than
k − 1, then D is an extended cycle.

It is customary to consider k-transitive oriented graphs. In terms of forbidden (not

necessarily induced) subdigraphs, k-transitive oriented graphs are oriented graphs

with forbidden P ∗k+1 and Ck+1, where P ∗k+1 is a uv-path on k + 1 vertices such that

u and v are not adjacent. Showing that a conjecture holds on k-transitive oriented

graphs, we get some information about a counterexample to this conjecture; which is

that every counterexample must contain P ∗k+1 or Ck+1.

In view of Theorem 3, it is convenient to find a sufficient condition for a strong k-

transitive oriented graph to have a cycle of length greater than k − 1. A relation

between δ+D (or δ−D) and the length of a longest cycle in an oriented graph D is given

by the following classical result.

Lemma 1. [21] Every oriented graph D contains a directed cycle of length a least δ+ + 2.

The bound given in Lemma 1 is best possible. Indeed, Jackson [21] constructed

a family of oriented graphs that contain no directed cycles of length greater than

δ+ + 2. An example of such graphs is given in Figure 2.

By Lemma 1, every strong k-transitive oriented graph with δ+ (or δ−) at least k − 2

has a cycle of length at least k and hence, by Theorem 3, it has the structure of an

extended cycle. The aim of this work is to improve this bound.

In this paper, we study strong k-transitive oriented graphs with max{δ−, δ+} at least

k − 4. We show that in most cases their structures are extended cycles. Our first

result is given in the following theorem.
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Figure 2. An oriented graph with δ+ = 1 and longest cycle of length 3

Theorem 4. Let D be a strong k-transitive oriented graph.

1. If k = 5 and max{δ−, δ+} ≥ 2, then D is a regular 5-tournament or an extended cycle.

2. If k = 6 and max{δ−, δ+} ≥ 3, then D is an extended cycle.

3. If k = 7 and max{δ−, δ+} ≥ 3, then D is a regular 7-tournament or an extended cycle.

4. If k ≥ 8 and max{δ−, δ+} ≥ k − 4, then D is an extended cycle.

Note that in case of 2-transitive oriented graphs, such an oriented graph has no cycles.

For k ∈ {3, 4}, the description is easy. In [8], we have the following result.

Proposition 1. [8] If D is a 3-transitive oriented graph, then δ+ ≤ 1.
(Since the converse of D is 3-transitive, we get also δ− ≤ 1).

If D is a strong 4-transitive oriented graph with max{δ−, δ+} ≥ 2, then D has a cycle

of length at least 4 and |V (D)| ≥ 5. Hence, by Theorem 3 D is an extended cycle.

One can think about the least integer f(k) such that if max{δ−, δ+} ≥ f(k), then

every strong k-transitive oriented graph is an extended cycle. We conjecture the

following.

Conjecture 1.1. Let D be a strong k-transitive oriented graph having at least k + 1
vertices. If max{δ−, δ+} ≥ k−1

2
, then D is an extended cycle.

In Section 2, we prove Theorem 4. In Section 3, we use the characterizations given

in Theorem 4 to immediately prove Seymour’s second neighborhood conjecture and

Bermond–Thomassen conjecture for some cases of k-transitive oriented graphs as well

as to obtain a characterization of k-transitive oriented graphs having a hamiltonian

cycle for k ≤ 6.

2. Main result

Lemma 2. Let D be a strong k-transitive digraph having two disjoint cycles Cm and Cn

of lengths at most k − 1. If m+ n ≥ k + 1, then we have the following properties.
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1. Each vertex in Cm dominates some vertex in Cn and vice versa.

2. Each vertex in Cm is dominated by some vertex in Cn and vice versa.

3. There exists a cycle in D of length greater than max{m,n}.

Proof. 1. Set Cm = x0 · · ·xm−1x0 and Cn = y0 · · · yn−1y0. Since D is strong, there

is a path P from xi to yj for some i and j such that V (P ) ∩ V (Cm) = {xi} and

V (P ) ∩ V (Cn) = {yj}. We may assume that `(P ) < k, otherwise we can find, by

k-transitivity, a path of length at most k − 1 from xi to yj . As m + n ≥ k + 1,

there exist an integer s ∈ {0, . . . ,m − 1} and an integer t ∈ {0, . . . , n − 1} such that

xsCmxiPyjCnyt is a path of length k. Hence xs → yt. Clearly, there exists an integer

r ∈ {0, . . . , n − 1} such that ytCnyr is a path of length k −m since m + n ≥ k + 1.

Now, xs+1CmxsytCnyr is a path of length k implying that xs+1 → yr. Therefore, by

induction, each vertex in Cm dominates some vertex in Cn. Similarly, we show that

each vertex in Cn dominates some vertex in Cm. 2. Let x ∈ V (Cm). Let D′ be the

converse of D. Note that D′ is also k-transitive. By 1., there exists y ∈ V (Cn) such

that (x, y) ∈ E(D′). Hence (y, x) ∈ E(D). Similarly, we show that each vertex in Cn
is dominated by some vertex in Cm.

3. We can assume that m ≥ n. Without loss of generality, by 1. and 2., assume that

x0 → y0 and yi → x1 for some i ∈ {0, . . . , n}. So x0y0Cnyix1Cmx0 is a cycle of length

at least m+ 1.

Lemma 3. Let D be a strong k-transitive oriented graph with k ≥ 5. If δ+ = k− 3, then
D has a cycle of length greater than k − 1.

Proof. Suppose to the contrary that the length of a longest cycle inD is at most k−1.

Since δ+ = k−3, there exists a cycle of length at least k−1. Hence a longest cycle in

D has length k − 1. Let C = x0 · · ·xk−2x0 be a longest cycle in D. Set H = D − C.

The oriented graph H is acyclic since otherwise, by Lemma 2, there exists a cycle of

length greater than k− 1 in D, which is a contradiction. Let u be a sink in H. Since

D is strong k-transitive and `(C) = k − 1, there exists some xi ∈ V (C) such that

xi → u. We may assume that x0 → u. Note that N+(u) ⊆ V (C). We have u 9 x1
since otherwise x0ux1Cx0 is a cycle of length k, which is a contradiction. Hence

N+(u) = {x2, . . . , xk−2} since δ+ = k− 3 and N+(u) ⊆ V (C). Let i ∈ {1, . . . , k− 3}.
We have xi 9 y for all y ∈ V (H) because otherwise uxi+1Cxiy is a path of length

k implying that u → y, which contradicts the fact that u is a sink in H. Hence

N+(xi) ⊆ V (C). It follows that N+(xi) = V (C) \ {xi−1, xi} for all i ∈ {1, . . . , k− 3}.
For k ≥ 6, we get N+(x1) = V (C) \ {x0, x1} and N+(x2) = V (C) \ {x1, x2} as well

as N+(x3) = V (C) \ {x2, x3}. Thus x1 → x3 and x3 → x1, which is a contradiction.

It is easy to check that the case for k = 5 also leads to a contradiction. In fact, for

k = 5, we must have N+(x1) = {x2, x3} and N+(x2) = {x0, x3}. Hence x3 must have

some out-neighbor w ∈ V (H) since d+(x3) ≥ 2. Now ux2x0x1x3w is a path of length

5 implying that u→ w, a contradiction.
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This proves that a longest cycle in D must have length greater than k − 1.

Lemma 4. Let D be a strong k-transitive oriented graph with k ≥ 7. If δ+ = k− 4, then
D has a cycle of length greater than k − 1.

Proof. Suppose to the contrary that the length of a longest cycle in D is at most

k − 1. Since δ+ = k − 4, there exists a cycle of length at least k − 2. Let C be a

longest cycle in D. Hence the length of C is k − 2 or k − 1. Set H = D − C. By

Lemma 2, we must have that H is an acyclic digraph since otherwise there will be a

cycle of length greater than `(C), which is a contradiction.

Case 1. `(C) = k − 2.

Set C = x0 · · ·xk−3x0.

Claim 1. There is a sink x in H and there is xi ∈ V (C) such that xi → x.

Proof of Claim 1. Let y be a sink in H. Since D is strong, there exists a path P from

xi to y for some i ∈ {0, . . . , k − 3}. We may assume that P ∩ C = {x0}. If `(P ) ≥ 3,

then there is a path of length k from some xi ∈ V (C) to y. Hence xi → y. If `(P ) = 1,

then there is nothing to prove. Assume now that `(P ) = 2. Set P = x0wy. We have

y 9 xi for each i ∈ {1, 2} since otherwise x0wyxiCx0 is a cycle of length greater

than `(C), which is a contradiction. It follows that N+(y) = V (C) \ {x1, x2} since

δ+ = k− 4 and y is a sink in H. Assume that N+(x2) ⊆ V (C) and N+(x3) ⊆ V (C).

Hence N+(x2) = V (C) \ {x1, x2} and N+(x3) = V (C) \ {x2, x3} since δ+ = k − 4.

Now yx3x1x2x4Cx0wy is a cycle of length greater than `(C), which is a contradiction.

Thus there exists, outside C, some out-neighbor of x2 or x3. It is easy to show that

if x2 → x for some x ∈ V (H), then x is a sink in H. In fact, suppose that there is

x′ ∈ V (H) such that x → x′. We have x′ 6= y since otherwise x0x1x2xyx3Cx0 is a

cycle of length greater than `(C), which is a contradiction. Now yx3Cx2xx
′ is a path

of length k implying that y → x′, which is a contradiction. Thus x must be a sink in

H. Similarly, we show that if x3 → x for some x ∈ V (H), then x must be a sink in

H. �
In view of Claim 1, we may assume that x0 → x where x is a sink in H. So we have

N+(x) = V (C) \ {x0, x1}. We will show that N+(x2) ⊆ V (C). On the contrary,

suppose that there exists x′ ∈ V (H) such that x2 → x′. Clearly, x′ 9 x since

otherwise x′xx3Cx2x
′ is a cycle of length greater than `(C), which is a contradiction.

Also, x′ 9 y for all y ∈ V (H) because otherwise xx3Cx2x
′y is a path of length

k implying that x → y, which is a contradiction. It follows that x′ is a sink in

H, and hence N+(x′) = V (C) \ {x2, x3}. We must have x1 9 x3 since otherwise

xx2x
′x1x3Cx0x is a cycle of length greater than `(C), which is a contradiction. As

d+(x1) ≥ k−4, there exists y ∈ V (H) such that x1 → y. Clearly, we have y 6= x since

otherwise x0x1xx2Cx0 is a cycle of length greater than `(C), which is a contradiction.

Also, y 9 y′ for all y′ ∈ V (H) because otherwise xx2Cx1yy
′ is a path of length k

implying that x → y′, which is a contradiction. It follows that y is a sink in H, and

henceN+(y) = V (C)\{x1, x2}. Now xx2x
′x1yx3Cx0x is a cycle of length greater than

`(C), which is a contradiction. We conclude that such an x′ does not exist. Therefore
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N+(x2) = V (C) \ {x1, x2}. Suppose that x1 has some out-neighbor y outside of C.

As before, y must be a sink in H. Hence N+(y) = V (C) \ {x1, x2}. If xk−3 → w

for some w ∈ V (H), then xx2x0x1yx3Cxk−3w is a path of length k. Hence x → w,

which is a contradiction. It follows that N+(xk−3) = V (C) \ {xk−4, xk−3}. Now

xx3Cxk−3x1x2x0x is a cycle of length greater than `(C), which is a contradiction.

Suppose now that N+(x1) ⊆ V (C). So N+(x1) = V (C) \ {x0, x1}. As x1 → xk−3
and δ+ = k − 4, there exists w ∈ V (H) such that xk−3 → w. If w → x, then

xx2x0x1x3Cxk−3wx is a cycle of length k, a contradiction. If w → w′ for some w′ in

H, then xx2x0x1x3Cxk−3ww
′ is a path of length k, and hence x→ w′, a contradiction.

It follows that w must be a sink in H. Thus N+(w) = V (C) \ {x0, xk−3}. Now

xx3Cxk−3wx1x2x0x is a cycle of length greater than `(C), which is a contradiction.

Case 2. `(C) = k − 1.

Set C = x0 · · ·xk−2x0. Let x be a sink in H. It is clear that there exists xi ∈ V (C)

such that xi → x since `(C) = k − 1 and D is a strong k-transitive oriented graph.

Assume, without loss of generality, that x0 → x. Note that x 9 x1 since otherwise

there will be a cycle of length greater than `(C).

We claim that if x→ xi for some i ∈ {2, . . . , k− 2}, then N+(xi−1) ⊆ V (C). Indeed,

let x → xi for some i ∈ {2, . . . , k − 2}. We have xxiCxi−1 is a path of length

k − 1. Hence xi−1 9 x since otherwise there will be a cycle of length k, which is

a contradiction. Also, xi−1 9 y for all y ∈ V (H) since otherwise there will be a

path of length k from x to y implying that x → y, which is a contradiction. Thus

N+(xi−1) ⊆ V (C) as claimed.

Subcase 2.1. x9 x2.

In this case, we have N+(x) = V (C) \ {x0, x1, x2}. We will prove that N+(xk−2) ⊆
V (C). On the contrary, suppose that there exists y ∈ V (H) such that xk−2 → y.

By the above claim, for all i ∈ {2, . . . k − 3}, we have N+(xi) ⊆ V (C). If x2 → x4,

then N+(x4) = V (C) \ {x2, x3, x4} since d+(x4) ≥ k− 4 and N+(x4) ⊆ V (C). Hence

x4 → x0. So x1x2x3x4x0xx5Cxk−2y is a path of length k implying that x1 → y. If

x2 9 x4, then we must have N+(x2) = V (C) \ {x1, x2, x4}, and hence x2 → x0. Now

x1x2x0xx3Cxk−2y is a path of length k implying that x1 → y. We have y 9 x since

otherwise yxx3Cx1y is a cycle of length k, which is a contradiction. Also y 9 y′ for all

y′ ∈ V (H) because otherwise xx3Cx1yy
′ is a path of length k implying that x→ y′,

which is a contradiction. It follows that y is a sink in H. Clearly, we have y 9 x0 and

y 9 x2 since otherwise there is a cycle yx0Cxk−2y or x0x1yx2Cx0 of length k, which

is a contradiction. Thus N+(y) ⊆ V (C) \ {xk−2, x0, x1, x2}, and therefore d+(y) ≤
k − 5 < δ+, which is a contradiction. We conclude that N+(xk−2) ⊆ V (C). Now we

will show that xk−2 9 x1. Suppose to the contrary that xk−2 → x1. If x2 → x4, then

N+(x4) = V (C) \ {x2, x3, x4}, and hence x4 → x0. So xk−2x1x2x3x4x0xx5Cxk−2
is a cycle of length k, which is a contradiction. If x2 9 x4, then we must have

N+(x2) = V (C) \ {x1, x2, x4}, and hence x2 → x0. Now xk−2x1x2x0xx3Cxk−2
is a cycle of length k, which is a contradiction. Thus xk−2 9 x1, and therefore

N+(xk−2) = V (C) \ {xk−3, xk−2, x1}. Hence xk−2 → x3, and thereby N+(x3) =

V (C) \ {xk−2, x2, x3}. So x3 → x1. As xk−2 → x2, this forces x2 → x0. Now
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x3x1x2x0xx4Cxk−2x3 is a cycle of length k, which is a contradiction.

Subcase 2.2. x→ x2.

Let us show that xi 9 x1 for all i ∈ {3, . . . , k − 2}. Note that N+(x1) ⊆ V (C) since

x → x2. If xi → x1 for some i ∈ {3, . . . , k − 3}, then N+(x1) = V (C) \ {x0, x1, xi}.
Hence x1 → xi+1. Now x0xx2Cxix1xi+1Cx0 is a cycle of length k, which is a

contradiction. Thus xi 9 x1 for all i ∈ {3, . . . , k − 3}. Since δ+ = k − 4 ≥ 7,

there exists s ∈ {4, . . . , k − 2} such that x → xs. Hence N+(xs−1) ⊆ V (C).

Note that xs−1 9 x1 as s − 1 ∈ {3, . . . , k − 3}. This forces xs−1 → x0. If

xk−2 → x1, then xk−2x1Cxs−1x0xxsCxk−2 is a cycle of length k, which is a con-

tradiction. Thus xk−2 9 x1. Therefore xi 9 x1 for all i ∈ {3, . . . , k − 2}. It is

easy to show that N+(xk−2) ⊂ V (C). In fact, if xk−2 → y for some y ∈ V (H), then

x1Cxs−1x0xxsCxk−2y is a path of length k. This gives x1 → y, which contradicts

N+(x1) ⊆ V (C). As xk−2 9 x1, we have N+(xk−2) = V (C) \ {xk−3, xk−2, x1}. And

as x3 9 x1, we have N+(x3) = V (C)\{x1, x2, x3}. Hence xk−2 → x3 and x3 → xk−2,

which is a contradiction.

This proves that a longest cycle in D must have length greater than k − 1.

Note that we can replace δ+ by δ− in the statements of Lemmas 3 and 4 since the

converse of D is also a k-transitive digraph.

Now, we are ready to prove Theorem 4.

Proof of Theorem 4. For max{δ−, δ+} ≥ k − 2, it is clear that D has a cycle of

length at least k. Hence, what remains is to check the cases max{δ−, δ+} = k−3 and

max{δ−, δ+} = k − 4. It is well-known that |V (D)| ≥ 2 max{δ−, δ+}+ 1.

1. For k = 5. If |V (D)| = 5 and max{δ−, δ+} ≥ 2, then we must have max{δ−, δ+} =

2. Thus D is a regular 5-tournament. If |V (D)| ≥ 6 and max{δ−, δ+} ≥ 2, then D

has a cycle of length at least 5 by Lemma 3. Hence, by Theorem 3, D is an extended

cycle.

2. For k = 6. By Lemma 3, D has a cycle of length at least 6. As max{δ−, δ+} ≥ 3,

we must have |V (D)| ≥ 7. Thus, by Theorem 3, D is an extended cycle.

3. For k = 7. If |V (D)| = 7 and max{δ−, δ+} ≥ 3, then we must have max{δ−, δ+} =

3. Thus D is a regular 7-tournament. If |V (D)| ≥ 8 and max{δ−, δ+} ≥ 3, then D

has a cycle of length at least 7 by Lemmas 3 and 4. Hence, by Theorem 3, D is an

extended cycle.

4. For k ≥ 8. By Lemmas 3 and 4, D has a cycle of length at least k. As

max{δ−, δ+} ≥ k − 4 and k ≥ 8, we must have |V (D)| ≥ k + 1. Thus, by Theo-

rem 3, D is an extended cycle. 2

3. Applications to some problems

3.1. Seymour’s Second Neighborhood Conjecture

We say that v is a Seymour vertex if d++(v) ≥ d+(v). In 1990, Paul Seymour proposed

the following conjecture.



M. Daamouch 689

Conjecture 3.1 (SSNC). In every finite oriented graph, there exists a Seymour vertex.

The first non-trivial case of SSNC was proved in 1996 by Fisher [11] for the class

of tournaments. Since then, SSNC was proven only for some very specific classes of

oriented graphs (e.g. [1, 5, 6, 9, 10, 14–16, 22]).

In 2001, Kaneko and Locke proved the following result.

Theorem 5. [22] Let D be an oriented graph. If δ+ ≤ 6, then D has a Seymour vertex.

In 2017, Garćıa-Vásquez and Hernández-Cruz [13] proved SSNC for 4-transitive ori-

ented graphs using a characterization of strong 4-transitive digraphs. Recently, in [8],

SSNC has been proved, by combinatorial methods, for k-transitive oriented graphs

for k ≤ 6. It is seen that the difficulty of SSNC for k-transitive digraphs is increasing

with respect to k, but the existence of characterizations, descriptions or properties

for such class of digraphs, may reduce the difficulty of the problem. For instance,

using the characterization given by Hernández-Cruz and Montellano-Ballesteros [20],

SSNC has been proved in [7] for k-transitive oriented graphs for k ≤ 9. Here, we use

the characterization obtained in Theorem 4 to confirm SSNC for k-transitive oriented

graphs for k ∈ {10, 11}.
We need the following two lemmas.

Lemma 5. [7] Let D be an oriented graph. Let T be a terminal strong component of D.
If v is a Seymour vertex in the subdigraph D[T ] induced by T , then v is a Seymour vertex in
D.

Proof. For all x ∈ T , we have N+
T (x) = N+

D (x) since T is a terminal strong compo-

nent of D. Hence d+T (v) = d+D(v) and d++
T (v) = d++

D (v).

Lemma 6. [7] If n is an integer at least 3, then every extended n-cycle C[V0, V1, ..., Vn−1]
has at least two Seymour vertices.

Proof. Let Vi be a smallest set of the partition {V0, V1, ..., Vn−1}, that is |Vi| ≤ |Vj |
for all 0 ≤ j ≤ n− 1. Note that for all 0 ≤ j ≤ n− 1, we have |Vj | ≥ 1. Let x ∈ Vi−1,

where the subscripts are taken modulo n. We have d+(x) = |Vi| ≤ |Vi+1| = d++(x),

and hence x is a Seymour vertex. If |Vi−1| ≥ 2, then there are at least two Seymour

vertices. If |Vi−1| = 1, then |Vi| = 1. Let y ∈ Vi−2. We have d+(y) = |Vi−1| = 1 =

|Vi| = d++(y). Therefore x and y are two Seymour vertices in C[V0, V1, ..., Vn−1].

In [7, 8], SSNC is proved for k-transitive oriented graph for k ≤ 9. Moreover, for

k ≤ 6 and δ+ > 0, at least two Seymour vertices were found. Here, we obtain the

following results.
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Theorem 6. Let D be a k-transitive oriented graph with k ≥ 7. If δ+ ≥ k − 4, then D
has at least two Seymour vertices.

Proof. Let T be a terminal strong component of D. Note that D[T ] is also a k-

transitive digraph with δ+T ≥ δ+ ≥ k − 4. Hence, by Theorem 4, we have D[T ] is an

extended cycle or a regular 7-tournament. If D[T ] is a regular 7-tournament, then

D[T ] has at least two Seymour vertices (it is a well-known result and easy to check). If

D[T ] is an extended cycle, then D[T ] has at least two Seymour vertices by Lemma 6.

Therefore, by Lemma 5, D has at least two Seymour vertices.

Corollary 1. Let D be a k-transitive oriented graph. If k ≤ 11, then D has a Seymour
vertex.

Proof. In [7], SSNC is proved for k ≤ 9. Let k ∈ {10, 11}. If δ+ ≥ k−4, then SSNC

holds by Theorem 6. If δ+ ≤ k − 5, then δ+ ≤ 6. Therefore, by Theorem 5, D has a

Seymour vertex.

3.2. Bermond–Thomassen Conjecture

In 1981, Bermond and Thomassen [4] proposed the following conjecture.

Conjecture 3.2 (BTC). [4] If a digraph D has minimum out-degree at least 2r − 1,
then D contains r disjoint cycles.

For r = 1, BTC is trivial. In 1983, Thomassen [25] proved it for r = 2.

Theorem 7. [25] Every digraph with δ+ ≥ 3 contains two disjoint cycles.

In 2009, Lichiardopol, Por and Sereni [24] proved it for r = 3.

Theorem 8. [24] Every digraph with δ+ ≥ 5 contains three disjoint cycles.

For r ≥ 4, BTC still remains open. In 2014, Bang-Jensen, Bessy and Thomassé [3]

proved BTC for tournaments. In 2015, Bai, Li, and Li [2] proved the conjecture for

bipartite tournaments. In 2020, R. Li et al. [23] proved BTC for local tournaments.

Here, we consider BTC for k-transitive oriented graphs, and we obtain the following

result.

Theorem 9. Let D be a k-transitive oriented graph with 3 ≤ k ≤ 11. If δ+ ≥ 2r − 1,
then D contains r disjoint cycles.
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Proof. If δ+ < 7, then r ∈ {1, 2, 3}. Hence the proof follows from Theorems 7, 8.

For δ+ ≥ 7, we consider T a terminal strong component of D. Clearly, we have

δ+D[T ] ≥ δ+ ≥ 7. Hence, by Theorem 4, we have D[T ] is an extended cycle. Let V0

be a smallest set of the cyclical partition of D[T ]. So |V0| = δ+D[T ]. It is easily seen

that D[T ] contains a collection of disjoint cycles; each visits the set V0 once. Thus,

D contains at least δ+D[T ] disjoint cycles.

3.3. Hamiltonian Cycle

Recall that a hamiltonian cycle of a digraph D is a directed cycle passing through all

the vertices of D. In this case we say that the digraph D is hamiltonian. Evidently,

an extended cycle C[X0, . . . , Xs] is hamiltonian if and only if all Xi’s have the same

size, that is, if and only if C[X0, . . . , Xs] is a regular digraph. Note that, for regular

digraphs, the concepts of connectedness and strong connectedness coincide. Hence

by Theorem 4, a k-transitive oriented graph with sufficiently large minimum in- or

out-degree is hamiltonian if and only if it is a connected regular oriented graph.

Therefore, to consider the hamiltonian problem for k-transitive oriented graphs, it

suffices to study the cases for small minimum in- or out-degree.

It is easily seen that a 3-transitive oriented graph is hamiltonian if and only if it is

connected and 1-regular, that is, if and only if it is a directed triangle since δ+ and

δ− are at most 1.

For k ≥ 4 with |V (D)| at least k + 1, the regularity and the hamiltonicity of a k-

transitive oriented graph D force δ+ ≥ 2 and δ− ≥ 2. Thus by Theorem 4, for

k ∈ {4, 5}, we have D is hamiltonian if and only if D is an extended cycle, that is, if

and only if D is connected and regular.

For k = 6. Since a 6-transitive oriented graph D is an extended cycle when δ+ ≥ 3,

it only remains to verify that if D is connected and 2-regular, then D is hamiltonian.

The proof of this case is straightforward. Actually, using Lemma 2 and the fact

that D is 6-transitive as well as D is 2-regular, we proved that D has a cycle of

length greater than 6, which implies that D is an extended cycle and therefore D is

hamiltonian since it is regular. Another shorter proof of this case is obtained by using

the well-known fact that a regular oriented graph has a cycle factor (a collection of

vertex-disjoint cycles that covers the vertex set of the digraph).

For future research, we propose the following conjecture.

Conjecture 3.3. Let k be an integer such that k ≥ 4 and let D be a k-transitive oriented
graph with |V (D)| ≥ k + 1. There exists a hamiltonian cycle in D if and only if D is
connected and regular.
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[13] P.R. Garćıa-Vázquez and C. Hernández-Cruz, Some results on 4-transitive di-

graphs, Discuss. Math. Graph Theory 37 (2017), no. 1, 117–129.

http://doi.org/10.7151/dmgt.1922.

[14] S. Ghazal, Seymour’s second neighborhood conjecture for tournaments missing a

generalized star, J. Graph Theory 71 (2012), no. 1, 89–94.



M. Daamouch 693

https://doi.org/10.1002/jgt.20634.

[15] , A contribution to the second neighborhood problem, Graphs Combin. 29

(2013), no. 5, 1365–1375.

https://doi.org/10.1007/s00373-012-1192-9.

[16] Z.R. Hassan, I.F. Khan, M.I. Poshni, and M. Shabbir, Seymour’s second neigh-

borhood conjecture for 6-antitransitive digraphs, Discrete Appl. Math. 292 (2021),

59–63.

https://doi.org/10.1016/j.dam.2020.12.026.

[17] C. Hernández-Cruz, 3-transitive digraphs, Discuss. Math. Graph Theory 32

(2012), no. 2, 205–219.

http://doi.org/10.7151/dmgt.1613.

[18] , 4-transitive digraphs I: The structure of strong 4-transitive digraphs,

Discuss. Math. Graph Theory 33 (2013), no. 2, 247–260.

http://doi.org/10.7151/dmgt.1645.

[19] C. Hernández-Cruz and H. Galeana-Sánchez, k-kernels in k-transitive and k-

quasi-transitive digraphs, Discrete Math. 312 (2012), no. 16, 2522–2530.

https://doi.org/10.1016/j.disc.2012.05.005.

[20] C. Hernández-Cruz and J.J. Montellano-Ballesteros, Some remarks on the struc-

ture of strong k-transitive digraphs, Discuss. Math. Graph Theory 34 (2014),

no. 4, 651–671.

http://doi.org/10.7151/dmgt.1765.

[21] B. Jackson, Long paths and cycles in oriented graphs, J. Graph Theory 5 (1981),

no. 2, 145–157.

https://doi.org/10.1002/jgt.3190050204.

[22] Y. Kaneko and S.C. Locke, The minimum degree approach for Paul Seymour’s

distance 2 conjecture, Congr. Numer. 148 (2001), 201–206.

[23] R. Li and B. Sheng, The second neighbourhood for bipartite tournaments, Discuss.

Math. Graph Theory 39 (2019), no. 2, 555–565.

http://doi.org/10.7151/dmgt.2018.
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