Research Article

Strong k-transitive oriented graphs with large minimum degree

Moussa Daamouch

KALMA Laboratory, Department of Mathematics, Faculty of Sciences I, Lebanese University, Beirut, Lebanon moussa.daamouch@ul.edu.lb

> Received: 1 November 2023; Accepted: 22 January 2024 Published Online: 16 February 2024

Abstract: A digraph $D = (V, E)$ is k-transitive if for any directed uv-path of length k, we have $(u, v) \in E$. In this paper, we study the structure of strong k-transitive oriented graphs having large minimum in- or out-degree. We show that such oriented graphs are extended cycles. As a consequence, we prove that Seymour's Second Neighborhood Conjecture (SSNC) holds for k-transitive oriented graphs for $k \leq 11$. Also we confirm Bermond–Thomassen Conjecture for k-transitive oriented graphs for $k \leq 11$. A characterization of k-transitive oriented graphs having a hamiltonian cycle for $k \leq 6$ is obtained immediately.

Keywords: k-transitive digraph, extended cycle, minimum degree.

AMS Subject classification: 05C20, 05C38, 05C75

1. Introduction

 c 2025 Azarbaijan Shahid Madani University A digraph D is an ordered pair of two disjoint sets (V, E) , where V is non-empty and $E \subset V \times V$. The set V is called the vertex set of D and is denoted by $V(D)$, while E is called the arc set of D and is denoted by $E(D)$. All the digraphs in this paper are finite and without loops (i.e. V is finite and for all $v \in V$, we have $(v, v) \notin E$). An arc (u, v) of D is symmetric if (v, u) is also an arc of D. An oriented graph D is an asymmetric digraph (with no symmetric arcs). We may write $u \to v$ and we say that u dominates v, meaning that $(u, v) \in E(D)$. We may write $u \to v$ if u does not dominate v. The out-neighborhood of a vertex v, denoted $N_D^+(v)$, is defined as $N_D^+(v) = \{u \in V(D) \colon v \to u\}.$ The second out-neighborhood of v, denoted $N_D^{++}(v)$, is defined as $N_D^{++}(v) = \{w \in V(D) \setminus N_D^+(v) : \exists x \in N_D^+(v), x \to w\}.$ The out-degree of v is $d_D^+(v) = |N_D^+(v)|$ and its second out-degree is $d_D^{++}(v) = |N_D^{++}(v)|$. Let $\delta_D^+(v) \in \delta^{+}$ denote the minimum out-degree in D. Analogously, we define in-neighborhood, second in-neighborhood, in-degree, second in-degree and minimum in-degree. We omit the subscript when it is clear from the context. A *tournament* is an oriented graph where between any two vertices there is an arc. A regular n-tournament is a tournament on *n* vertices where *n* is an odd integer and every vertex has in- and out-degree $\frac{n-1}{2}$. A vertex with out-degree 0 is called a *sink*. We denote by $x_0x_1 \ldots x_k$ a directed x_0x_k path of length k and we may write $x_0 \to x_1 \to \cdots \to x_k$. A directed k-cycle (C_k) is denoted by $x_0 \dots x_{k-1}x_0$, and we may write $x_0 \to \cdots \to x_{k-1} \to x_0$. Throughout this paper, a path (respectively cycle) means a directed path (respectively cycle). For a path or a cycle $W = x_0 x_1 ... x_k$ (the subscripts are taken modulo k if W is a cycle) we denote by x_iWx_j the subpath of W from x_i to x_j ; that is $x_iWx_j = x_ix_{i+1} \ldots x_j$. The length of a path (or a cycle) W is denoted by $\ell(W)$. An acyclic digraph is a digraph with no cycle. An *extended k-cycle*, denoted by $C[X_0, \ldots, X_{k-1}]$, is obtained from a k-cycle $C = x_0 \dots x_{k-1}x_0$ by replacing x_i by an independent vertex set X_i for all $i \in \{0, \ldots, k-1\}$ such that every vertex in X_i dominates every vertex in X_{i+1} (subscripts taken modulo k). Figure [1](#page-1-0) provides an example of an extended 3-cycle.

Figure 1. An extended 3-cycle

A digraph is *strongly connected* (or *strong*) if for every pair of vertices u and v, there exists a *uv*-directed path. A *strong component* of D is a maximal strong subdigraph of D. The condensation of D is the digraph D^* with $V(D^*)$ equals to the set of all strong components of D, and $(S,T) \in E(D^*)$ if and only if there is $(s,t) \in E(D)$ such that $s \in S$ and $t \in T$. Clearly, D^* is an acyclic digraph, and thus, it has a vertex of out-degree zero and a vertex of in-degree zero. A terminal component of D is a strong component T of D such that $d_{D^*}^+(T) = 0$. An *initial component* of D is a strong component I of D such that $d_{D^*}^-(I) = 0$.

A digraph D is called *transitive* if for any directed path $x_0x_1x_2$ of length 2 in D, we have $(x_0, x_2) \in E(D)$. In 2012, Galena-Sánchez and Hernández-Cruz [\[19\]](#page-12-0) introduced the class of k-transitive digraphs as a generalization of transitive digraphs. We say that D is a k-transitive digraph if for every $u, v \in V(D)$, the existence of a directed uv-path of length k implies $(u, v) \in E(D)$. Since their introduction, k-transitive digraphs have received a fair amount of attention (see [\[12\]](#page-11-0)). Strong k-transitive digraphs have been characterized for $k \in \{3, 4\}$ by Hernández-Cruz [\[17,](#page-12-1) [18\]](#page-12-2). For $k > 4$, there are no known structural characterizations for strong k-transitive digraphs. However, there is some information about strong k-transitive digraphs for arbitrary k. For instance, Hernández-Cruz and Montellano-Ballesteros $[20]$ characterized strong k -transitive digraphs (general digraphs) having a cycle of length at least k .

Theorem 1. [\[20\]](#page-12-3) Let k be an integer, $k \geq 2$. Let D be a strong k-transitive digraph. Suppose that D contains a directed cycle of length n such that the greatest common divisor of n and $k-1$ is equal to d and $n \geq k+1$. Then the following hold:

- 1. If $d = 1$, then D is a complete digraph (that is for all $x, y \in V(D)$, we have $x \to y$ and $y \rightarrow x$).
- 2. If $d > 2$, then D is either a complete digraph, a complete bipartite digraph, or an extended d-cycle.

Theorem 2. [\[20\]](#page-12-3) Let k be an integer, $k \ge 2$. Let D be a strong k-transitive digraph of order at least $k+1$. If D contains a directed cycle of length k, then D is a complete digraph.

For oriented graphs, we can easily reformulate Theorems [1](#page-2-0) and [2](#page-2-1) as the following result.

Theorem 3. [\[20\]](#page-12-3) Let k be an integer such that $k \geq 3$. Let D be a strong k-transitive oriented graph of order at least $k + 1$. If D contains a directed cycle of length greater than $k-1$, then D is an extended cycle.

It is customary to consider k-transitive oriented graphs. In terms of forbidden (not necessarily induced) subdigraphs, k-transitive oriented graphs are oriented graphs with forbidden P_{k+1}^* and C_{k+1} , where P_{k+1}^* is a uv-path on $k+1$ vertices such that u and v are not adjacent. Showing that a conjecture holds on k -transitive oriented graphs, we get some information about a counterexample to this conjecture; which is that every counterexample must contain P_{k+1}^* or C_{k+1} .

In view of Theorem [3,](#page-2-2) it is convenient to find a sufficient condition for a strong k transitive oriented graph to have a cycle of length greater than $k - 1$. A relation between δ_D^+ (or δ_D^-) and the length of a longest cycle in an oriented graph D is given by the following classical result.

Lemma 1. [\[21\]](#page-12-4) Every oriented graph D contains a directed cycle of length a least δ^+ + 2.

The bound given in Lemma [1](#page-2-3) is best possible. Indeed, Jackson [\[21\]](#page-12-4) constructed a family of oriented graphs that contain no directed cycles of length greater than δ^+ + [2.](#page-3-0) An example of such graphs is given in Figure 2.

By Lemma [1,](#page-2-3) every strong k-transitive oriented graph with δ^+ (or δ^-) at least $k-2$ has a cycle of length at least k and hence, by Theorem [3,](#page-2-2) it has the structure of an extended cycle. The aim of this work is to improve this bound.

In this paper, we study strong k-transitive oriented graphs with $\max\{\delta^-, \delta^+\}\$ at least $k - 4$. We show that in most cases their structures are extended cycles. Our first result is given in the following theorem.

Figure 2. An oriented graph with $\delta^+=1$ and longest cycle of length 3

Theorem 4. Let D be a strong k-transitive oriented graph.

- 1. If $k = 5$ and $\max\{\delta^-, \delta^+\} \geq 2$, then D is a regular 5-tournament or an extended cycle.
- 2. If $k = 6$ and $\max\{\delta^-, \delta^+\} \geq 3$, then D is an extended cycle.
- 3. If $k = 7$ and $\max\{\delta^-, \delta^+\} \geq 3$, then D is a regular 7-tournament or an extended cycle.
- 4. If $k \geq 8$ and $\max\{\delta^-, \delta^+\} \geq k-4$, then D is an extended cycle.

Note that in case of 2-transitive oriented graphs, such an oriented graph has no cycles. For $k \in \{3, 4\}$, the description is easy. In [\[8\]](#page-11-1), we have the following result.

Proposition 1. [\[8\]](#page-11-1) If D is a 3-transitive oriented graph, then $\delta^+ \leq 1$. (Since the converse of D is 3-transitive, we get also $\delta^- \leq 1$).

If D is a strong 4-transitive oriented graph with $\max\{\delta^-, \delta^+\}\geq 2$, then D has a cycle of length at least 4 and $|V(D)| \geq 5$. Hence, by Theorem [3](#page-2-2) D is an extended cycle. One can think about the least integer $f(k)$ such that if $\max\{\delta^-, \delta^+\} \ge f(k)$, then every strong k-transitive oriented graph is an extended cycle. We conjecture the following.

Conjecture 1.1. Let D be a strong k-transitive oriented graph having at least $k + 1$ vertices. If $\max\{\delta^-, \delta^+\} \ge \frac{k-1}{2}$, then D is an extended cycle.

In Section [2,](#page-3-1) we prove Theorem [4.](#page-3-2) In Section [3,](#page-7-0) we use the characterizations given in Theorem [4](#page-3-2) to immediately prove Seymour's second neighborhood conjecture and Bermond–Thomassen conjecture for some cases of k-transitive oriented graphs as well as to obtain a characterization of k -transitive oriented graphs having a hamiltonian cycle for $k \leq 6$.

2. Main result

Lemma 2. Let D be a strong k-transitive digraph having two disjoint cycles C_m and C_n of lengths at most $k - 1$. If $m + n \geq k + 1$, then we have the following properties.

- 1. Each vertex in C_m dominates some vertex in C_n and vice versa.
- 2. Each vertex in C_m is dominated by some vertex in C_n and vice versa.
- 3. There exists a cycle in D of length greater than $\max\{m, n\}$.

Proof. 1. Set $C_m = x_0 \cdots x_{m-1}x_0$ and $C_n = y_0 \cdots y_{n-1}y_0$. Since D is strong, there is a path P from x_i to y_j for some i and j such that $V(P) \cap V(C_m) = \{x_i\}$ and $V(P) \cap V(C_n) = \{y_j\}.$ We may assume that $\ell(P) < k$, otherwise we can find, by k-transitivity, a path of length at most $k-1$ from x_i to y_j . As $m+n \geq k+1$, there exist an integer $s \in \{0, \ldots, m-1\}$ and an integer $t \in \{0, \ldots, n-1\}$ such that $x_sC_mx_iPy_jC_ny_t$ is a path of length k. Hence $x_s \rightarrow y_t$. Clearly, there exists an integer $r \in \{0, \ldots, n-1\}$ such that $y_t C_n y_r$ is a path of length $k-m$ since $m+n \geq k+1$. Now, $x_{s+1}C_mx_sy_tC_ny_r$ is a path of length k implying that $x_{s+1} \rightarrow y_r$. Therefore, by induction, each vertex in C_m dominates some vertex in C_n . Similarly, we show that each vertex in C_n dominates some vertex in C_m . 2. Let $x \in V(C_m)$. Let D' be the converse of D. Note that D' is also k-transitive. By 1., there exists $y \in V(C_n)$ such that $(x, y) \in E(D')$. Hence $(y, x) \in E(D)$. Similarly, we show that each vertex in C_n is dominated by some vertex in C_m .

3. We can assume that $m \geq n$. Without loss of generality, by 1. and 2., assume that $x_0 \to y_0$ and $y_i \to x_1$ for some $i \in \{0, \ldots, n\}$. So $x_0y_0C_ny_ix_1C_mx_0$ is a cycle of length at least $m + 1$. \Box

Lemma 3. Let D be a strong k-transitive oriented graph with $k \geq 5$. If $\delta^+ = k - 3$, then D has a cycle of length greater than $k-1$.

Proof. Suppose to the contrary that the length of a longest cycle in D is at most $k-1$. Since $\delta^+ = k - 3$, there exists a cycle of length at least $k - 1$. Hence a longest cycle in D has length $k-1$. Let $C = x_0 \cdots x_{k-2}x_0$ be a longest cycle in D. Set $H = D - C$. The oriented graph H is acyclic since otherwise, by Lemma [2,](#page-3-3) there exists a cycle of length greater than $k-1$ in D, which is a contradiction. Let u be a sink in H. Since D is strong k-transitive and $\ell(C) = k - 1$, there exists some $x_i \in V(C)$ such that $x_i \to u$. We may assume that $x_0 \to u$. Note that $N^+(u) \subseteq V(C)$. We have $u \to x_1$ since otherwise $x_0ux_1Cx_0$ is a cycle of length k, which is a contradiction. Hence $N^+(u) = \{x_2, \ldots, x_{k-2}\}\$ since $\delta^+ = k-3$ and $N^+(u) \subseteq V(C)$. Let $i \in \{1, \ldots, k-3\}$. We have $x_i \to y$ for all $y \in V(H)$ because otherwise $ux_{i+1}Cx_iy$ is a path of length k implying that $u \to y$, which contradicts the fact that u is a sink in H. Hence $N^+(x_i) \subseteq V(C)$. It follows that $N^+(x_i) = V(C) \setminus \{x_{i-1}, x_i\}$ for all $i \in \{1, \ldots, k-3\}$. For $k \ge 6$, we get $N^+(x_1) = V(C) \setminus \{x_0, x_1\}$ and $N^+(x_2) = V(C) \setminus \{x_1, x_2\}$ as well as $N^+(x_3) = V(C) \setminus \{x_2, x_3\}$. Thus $x_1 \to x_3$ and $x_3 \to x_1$, which is a contradiction. It is easy to check that the case for $k = 5$ also leads to a contradiction. In fact, for $k = 5$, we must have $N^+(x_1) = \{x_2, x_3\}$ and $N^+(x_2) = \{x_0, x_3\}$. Hence x_3 must have some out-neighbor $w \in V(H)$ since $d^+(x_3) \geq 2$. Now $ux_2x_0x_1x_3w$ is a path of length 5 implying that $u \to w$, a contradiction.

This proves that a longest cycle in D must have length greater than $k-1$.

 \Box

Lemma 4. Let D be a strong k-transitive oriented graph with $k \ge 7$. If $\delta^+ = k - 4$, then D has a cycle of length greater than $k-1$.

Proof. Suppose to the contrary that the length of a longest cycle in D is at most $k-1$. Since $\delta^+ = k-4$, there exists a cycle of length at least $k-2$. Let C be a longest cycle in D. Hence the length of C is $k - 2$ or $k - 1$. Set $H = D - C$. By Lemma [2,](#page-3-3) we must have that H is an acyclic digraph since otherwise there will be a cycle of length greater than $\ell(C)$, which is a contradiction.

Case 1. $\ell(C) = k - 2$. Set $C = x_0 \cdots x_{k-3}x_0$.

Claim 1. There is a sink x in H and there is $x_i \in V(C)$ such that $x_i \to x$.

Proof of Claim 1. Let y be a sink in H. Since D is strong, there exists a path P from x_i to y for some $i \in \{0, \ldots, k-3\}$. We may assume that $P \cap C = \{x_0\}$. If $\ell(P) \geq 3$, then there is a path of length k from some $x_i \in V(C)$ to y. Hence $x_i \to y$. If $\ell(P) = 1$, then there is nothing to prove. Assume now that $\ell(P) = 2$. Set $P = x_0wy$. We have $y \rightarrow x_i$ for each $i \in \{1,2\}$ since otherwise $x_0 w y x_i C x_0$ is a cycle of length greater than $\ell(C)$, which is a contradiction. It follows that $N^+(y) = V(C) \setminus \{x_1, x_2\}$ since $\delta^+ = k - 4$ and y is a sink in H. Assume that $N^+(x_2) \subseteq V(C)$ and $N^+(x_3) \subseteq V(C)$. Hence $N^+(x_2) = V(C) \setminus \{x_1, x_2\}$ and $N^+(x_3) = V(C) \setminus \{x_2, x_3\}$ since $\delta^+ = k - 4$. Now $yx_3x_1x_2x_4Cx_0wy$ is a cycle of length greater than $\ell(C)$, which is a contradiction. Thus there exists, outside C, some out-neighbor of x_2 or x_3 . It is easy to show that if $x_2 \to x$ for some $x \in V(H)$, then x is a sink in H. In fact, suppose that there is $x' \in V(H)$ such that $x \to x'$. We have $x' \neq y$ since otherwise $x_0x_1x_2xyx_3Cx_0$ is a cycle of length greater than $\ell(C)$, which is a contradiction. Now yx_3Cx_2xx' is a path of length k implying that $y \to x'$, which is a contradiction. Thus x must be a sink in H. Similarly, we show that if $x_3 \to x$ for some $x \in V(H)$, then x must be a sink in $H.$

In view of Claim 1, we may assume that $x_0 \to x$ where x is a sink in H. So we have $N^+(x) = V(C) \setminus \{x_0, x_1\}.$ We will show that $N^+(x_2) \subseteq V(C)$. On the contrary, suppose that there exists $x' \in V(H)$ such that $x_2 \to x'$. Clearly, $x' \to x$ since otherwise $x'xx_3Cx_2x'$ is a cycle of length greater than $\ell(C)$, which is a contradiction. Also, $x' \rightarrow y$ for all $y \in V(H)$ because otherwise $xx_3Cx_2x'y$ is a path of length k implying that $x \to y$, which is a contradiction. It follows that x' is a sink in H, and hence $N^+(x') = V(C) \setminus \{x_2, x_3\}$. We must have $x_1 \nightharpoonup x_3$ since otherwise $xx_2x'x_1x_3Cx_0x$ is a cycle of length greater than $\ell(C)$, which is a contradiction. As $d^+(x_1) \geq k-4$, there exists $y \in V(H)$ such that $x_1 \to y$. Clearly, we have $y \neq x$ since otherwise $x_0x_1xx_2Cx_0$ is a cycle of length greater than $\ell(C)$, which is a contradiction. Also, $y \to y'$ for all $y' \in V(H)$ because otherwise xx_2Cx_1yy' is a path of length k implying that $x \to y'$, which is a contradiction. It follows that y is a sink in H, and hence $N^+(y) = V(C) \setminus \{x_1, x_2\}$. Now $xx_2x'x_1yx_3Cx_0x$ is a cycle of length greater than $\ell(C)$, which is a contradiction. We conclude that such an x' does not exist. Therefore $N^+(x_2) = V(C) \setminus \{x_1, x_2\}.$ Suppose that x_1 has some out-neighbor y outside of C. As before, y must be a sink in H. Hence $N^+(y) = V(C) \setminus \{x_1, x_2\}$. If $x_{k-3} \to w$ for some $w \in V(H)$, then $xx_2x_0x_1yx_3Cx_{k-3}w$ is a path of length k. Hence $x \to w$, which is a contradiction. It follows that $N^+(x_{k-3}) = V(C) \setminus \{x_{k-4}, x_{k-3}\}.$ Now $xx_3Cx_{k-3}x_1x_2x_0x$ is a cycle of length greater than $\ell(C)$, which is a contradiction. Suppose now that $N^+(x_1) \subseteq V(C)$. So $N^+(x_1) = V(C) \setminus \{x_0, x_1\}$. As $x_1 \to x_{k-3}$ and $\delta^+ = k - 4$, there exists $w \in V(H)$ such that $x_{k-3} \to w$. If $w \to x$, then $xx_2x_0x_1x_3Cx_{k-3}wx$ is a cycle of length k, a contradiction. If $w \to w'$ for some w' in H, then $xx_2x_0x_1x_3Cx_{k-3}ww'$ is a path of length k, and hence $x \to w'$, a contradiction. It follows that w must be a sink in H. Thus $N^+(w) = V(C) \setminus \{x_0, x_{k-3}\}.$ Now $xx_3Cx_{k-3}wx_1x_2x_0x$ is a cycle of length greater than $\ell(C)$, which is a contradiction. **Case 2.** $\ell(C) = k - 1$.

Set $C = x_0 \cdots x_{k-2}x_0$. Let x be a sink in H. It is clear that there exists $x_i \in V(C)$ such that $x_i \to x$ since $\ell(C) = k - 1$ and D is a strong k-transitive oriented graph. Assume, without loss of generality, that $x_0 \to x$. Note that $x \to x_1$ since otherwise there will be a cycle of length greater than $\ell(C)$.

We claim that if $x \to x_i$ for some $i \in \{2, \ldots, k-2\}$, then $N^+(x_{i-1}) \subseteq V(C)$. Indeed, let $x \to x_i$ for some $i \in \{2, ..., k-2\}$. We have xx_iCx_{i-1} is a path of length $k-1$. Hence $x_{i-1} \rightarrow x$ since otherwise there will be a cycle of length k, which is a contradiction. Also, $x_{i-1} \rightarrow y$ for all $y \in V(H)$ since otherwise there will be a path of length k from x to y implying that $x \to y$, which is a contradiction. Thus $N^+(x_{i-1}) \subseteq V(C)$ as claimed.

Subcase 2.1. $x \rightarrow x_2$.

In this case, we have $N^+(x) = V(C) \setminus \{x_0, x_1, x_2\}$. We will prove that $N^+(x_{k-2}) \subseteq$ $V(C)$. On the contrary, suppose that there exists $y \in V(H)$ such that $x_{k-2} \to y$. By the above claim, for all $i \in \{2, \ldots k-3\}$, we have $N^+(x_i) \subseteq V(C)$. If $x_2 \to x_4$, then $N^+(x_4) = V(C) \setminus \{x_2, x_3, x_4\}$ since $d^+(x_4) \geq k-4$ and $N^+(x_4) \subseteq V(C)$. Hence $x_4 \to x_0$. So $x_1x_2x_3x_4x_0xx_5Cx_{k-2}y$ is a path of length k implying that $x_1 \to y$. If $x_2 \to x_4$, then we must have $N^+(x_2) = V(C) \setminus \{x_1, x_2, x_4\}$, and hence $x_2 \to x_0$. Now $x_1x_2x_0x_3Cx_{k-2}y$ is a path of length k implying that $x_1 \rightarrow y$. We have $y \nrightarrow x$ since otherwise yxx_3Cx_1y is a cycle of length k, which is a contradiction. Also $y \to y'$ for all $y' \in V(H)$ because otherwise xx_3Cx_1yy' is a path of length k implying that $x \to y'$, which is a contradiction. It follows that y is a sink in H. Clearly, we have $y \to x_0$ and $y \nrightarrow x_2$ since otherwise there is a cycle $yx_0Cx_{k-2}y$ or $x_0x_1yx_2Cx_0$ of length k, which is a contradiction. Thus $N^+(y) \subseteq V(C) \setminus \{x_{k-2}, x_0, x_1, x_2\}$, and therefore $d^+(y) \leq$ $k-5<\delta^+$, which is a contradiction. We conclude that $N^+(x_{k-2})\subseteq V(C)$. Now we will show that $x_{k-2} \to x_1$. Suppose to the contrary that $x_{k-2} \to x_1$. If $x_2 \to x_4$, then $N^+(x_4) = V(C) \setminus \{x_2, x_3, x_4\}$, and hence $x_4 \to x_0$. So $x_{k-2}x_1x_2x_3x_4x_0xx_5Cx_{k-2}$ is a cycle of length k, which is a contradiction. If $x_2 \rightarrow x_4$, then we must have $N^+(x_2) = V(C) \setminus \{x_1, x_2, x_4\}$, and hence $x_2 \to x_0$. Now $x_{k-2}x_1x_2x_0xx_3Cx_{k-2}$ is a cycle of length k, which is a contradiction. Thus $x_{k-2} \rightarrow x_1$, and therefore $N^+(x_{k-2}) = V(C) \setminus \{x_{k-3}, x_{k-2}, x_1\}.$ Hence $x_{k-2} \to x_3$, and thereby $N^+(x_3) =$ $V(C) \setminus \{x_{k-2}, x_2, x_3\}$. So $x_3 \to x_1$. As $x_{k-2} \to x_2$, this forces $x_2 \to x_0$. Now

 \Box

 $x_3x_1x_2x_0xx_4Cx_{k-2}x_3$ is a cycle of length k, which is a contradiction.

Subcase 2.2. $x \rightarrow x_2$.

Let us show that $x_i \to x_1$ for all $i \in \{3, ..., k-2\}$. Note that $N^+(x_1) \subseteq V(C)$ since $x \to x_2$. If $x_i \to x_1$ for some $i \in \{3, ..., k-3\}$, then $N^+(x_1) = V(C) \setminus \{x_0, x_1, x_i\}$. Hence $x_1 \rightarrow x_{i+1}$. Now $x_0 x x_2 C x_i x_1 x_{i+1} C x_0$ is a cycle of length k, which is a contradiction. Thus $x_i \rightarrow x_1$ for all $i \in \{3, ..., k-3\}$. Since $\delta^+ = k - 4 \ge 7$, there exists $s \in \{4, ..., k-2\}$ such that $x \to x_s$. Hence $N^+(x_{s-1}) \subseteq V(C)$. Note that $x_{s-1} \rightarrow x_1$ as $s - 1 \in \{3, ..., k - 3\}$. This forces $x_{s-1} \rightarrow x_0$. If $x_{k-2} \rightarrow x_1$, then $x_{k-2}x_1Cx_{s-1}x_0xx_sCx_{k-2}$ is a cycle of length k, which is a contradiction. Thus $x_{k-2} \to x_1$. Therefore $x_i \to x_1$ for all $i \in \{3, ..., k-2\}$. It is easy to show that $N^+(x_{k-2}) \subset V(C)$. In fact, if $x_{k-2} \to y$ for some $y \in V(H)$, then $x_1Cx_{s-1}x_0xx_sCx_{k-2}y$ is a path of length k. This gives $x_1 \rightarrow y$, which contradicts $N^+(x_1) \subseteq V(C)$. As $x_{k-2} \to x_1$, we have $N^+(x_{k-2}) = V(C) \setminus \{x_{k-3}, x_{k-2}, x_1\}$. And as $x_3 \to x_1$, we have $N^+(x_3) = V(C) \setminus \{x_1, x_2, x_3\}$. Hence $x_{k-2} \to x_3$ and $x_3 \to x_{k-2}$, which is a contradiction.

This proves that a longest cycle in D must have length greater than $k - 1$.

Note that we can replace δ^+ by δ^- in the statements of Lemmas [3](#page-4-0) and [4](#page-5-0) since the converse of D is also a k-transitive digraph.

Now, we are ready to prove Theorem [4.](#page-3-2)

Proof of Theorem [4](#page-3-2). For $\max{\{\delta^-, \delta^+\}} \geq k-2$, it is clear that D has a cycle of length at least k. Hence, what remains is to check the cases $\max\{\delta^-, \delta^+\} = k - 3$ and $\max\{\delta^-, \delta^+\} = k - 4$. It is well-known that $|V(D)| \ge 2 \max\{\delta^-, \delta^+\} + 1$.

1. For $k = 5$. If $|V(D)| = 5$ and $\max\{\delta^-, \delta^+\} \geq 2$, then we must have $\max\{\delta^-, \delta^+\} =$ 2. Thus D is a regular 5-tournament. If $|V(D)| \geq 6$ and $\max\{\delta^-, \delta^+\} \geq 2$, then D has a cycle of length at least 5 by Lemma [3.](#page-4-0) Hence, by Theorem [3,](#page-2-2) D is an extended cycle.

2. For $k = 6$. By Lemma [3,](#page-4-0) D has a cycle of length at least 6. As $\max\{\delta^-, \delta^+\} \geq 3$, we must have $|V(D)| \ge 7$. Thus, by Theorem [3,](#page-2-2) D is an extended cycle.

3. For $k = 7$. If $|V(D)| = 7$ and $\max\{\delta^-, \delta^+\} \ge 3$, then we must have $\max\{\delta^-, \delta^+\} =$ 3. Thus D is a regular 7-tournament. If $|V(D)| \geq 8$ and $\max\{\delta^-, \delta^+\} \geq 3$, then D has a cycle of length at least 7 by Lemmas [3](#page-4-0) and [4.](#page-5-0) Hence, by Theorem [3,](#page-2-2) D is an extended cycle.

4. For $k \geq 8$. By Lemmas [3](#page-4-0) and [4,](#page-5-0) D has a cycle of length at least k. As $\max\{\delta^-, \delta^+\}\geq k-4$ and $k\geq 8$, we must have $|V(D)|\geq k+1$. Thus, by Theo-rem [3,](#page-2-2) D is an extended cycle. \square

3. Applications to some problems

3.1. Seymour's Second Neighborhood Conjecture

We say that v is a Seymour vertex if $d^{++}(v) \geq d^+(v)$. In 1990, Paul Seymour proposed the following conjecture.

Conjecture 3.1 (SSNC). In every finite oriented graph, there exists a Seymour vertex.

The first non-trivial case of SSNC was proved in 1996 by Fisher [\[11\]](#page-11-2) for the class of tournaments. Since then, SSNC was proven only for some very specific classes of oriented graphs (e.g. [\[1,](#page-11-3) [5,](#page-11-4) [6,](#page-11-5) [9,](#page-11-6) [10,](#page-11-7) [14–](#page-11-8)[16,](#page-12-5) [22\]](#page-12-6)).

In 2001, Kaneko and Locke proved the following result.

Theorem 5. [\[22\]](#page-12-6) Let D be an oriented graph. If $\delta^+ \leq 6$, then D has a Seymour vertex.

In 2017, García-Vásquez and Hernández-Cruz $[13]$ proved SSNC for 4-transitive oriented graphs using a characterization of strong 4-transitive digraphs. Recently, in [\[8\]](#page-11-1), SSNC has been proved, by combinatorial methods, for k-transitive oriented graphs for $k \leq 6$. It is seen that the difficulty of SSNC for k-transitive digraphs is increasing with respect to k , but the existence of characterizations, descriptions or properties for such class of digraphs, may reduce the difficulty of the problem. For instance, using the characterization given by Hernández-Cruz and Montellano-Ballesteros [\[20\]](#page-12-3), SSNC has been proved in [\[7\]](#page-11-10) for k-transitive oriented graphs for $k \leq 9$. Here, we use the characterization obtained in Theorem [4](#page-3-2) to confirm SSNC for k-transitive oriented graphs for $k \in \{10, 11\}$.

We need the following two lemmas.

Lemma 5. [\[7\]](#page-11-10) Let D be an oriented graph. Let T be a terminal strong component of D. If v is a Seymour vertex in the subdigraph $D[T]$ induced by T, then v is a Seymour vertex in D.

Proof. For all $x \in T$, we have $N_T^+(x) = N_D^+(x)$ since T is a terminal strong component of D. Hence $d^+_T(v) = d^+_D(v)$ and $d^{++}_T(v) = d^{++}_D(v)$. \Box

Lemma 6. [\[7\]](#page-11-10) If n is an integer at least 3, then every extended n-cycle $C[V_0, V_1, ..., V_{n-1}]$ has at least two Seymour vertices.

Proof. Let V_i be a smallest set of the partition $\{V_0, V_1, ..., V_{n-1}\}\$, that is $|V_i| \leq |V_j|$ for all $0 \leq j \leq n-1$. Note that for all $0 \leq j \leq n-1$, we have $|V_j| \geq 1$. Let $x \in V_{i-1}$, where the subscripts are taken modulo *n*. We have $d^+(x) = |V_i| \leq |V_{i+1}| = d^{++}(x)$, and hence x is a Seymour vertex. If $|V_{i-1}| \geq 2$, then there are at least two Seymour vertices. If $|V_{i-1}| = 1$, then $|V_i| = 1$. Let $y \in V_{i-2}$. We have $d^+(y) = |V_{i-1}| = 1$ $|V_i| = d^{++}(y)$. Therefore x and y are two Seymour vertices in $C[V_0, V_1, ..., V_{n-1}]$.

In [\[7,](#page-11-10) [8\]](#page-11-1), SSNC is proved for k-transitive oriented graph for $k \leq 9$. Moreover, for $k \leq 6$ and $\delta^+ > 0$, at least two Seymour vertices were found. Here, we obtain the following results.

Theorem 6. Let D be a k-transitive oriented graph with $k \ge 7$. If $\delta^+ \ge k - 4$, then D has at least two Seymour vertices.

Proof. Let T be a terminal strong component of D. Note that $D[T]$ is also a ktransitive digraph with $\delta^+_T \geq \delta^+ \geq k-4$. Hence, by Theorem [4,](#page-3-2) we have $D[T]$ is an extended cycle or a regular 7-tournament. If $D[T]$ is a regular 7-tournament, then $D[T]$ has at least two Seymour vertices (it is a well-known result and easy to check). If $D[T]$ is an extended cycle, then $D[T]$ has at least two Seymour vertices by Lemma [6.](#page-8-0) Therefore, by Lemma [5,](#page-8-1) D has at least two Seymour vertices. \Box

Corollary 1. Let D be a k-transitive oriented graph. If $k \leq 11$, then D has a Seymour vertex.

Proof. In [\[7\]](#page-11-10), SSNC is proved for $k \leq 9$. Let $k \in \{10, 11\}$. If $\delta^+ \geq k-4$, then SSNC holds by Theorem [6.](#page-9-0) If $\delta^+ \leq k-5$, then $\delta^+ \leq 6$. Therefore, by Theorem [5,](#page-8-2) D has a Seymour vertex. \Box

3.2. Bermond–Thomassen Conjecture

In 1981, Bermond and Thomassen [\[4\]](#page-11-11) proposed the following conjecture.

Conjecture 3.2 (BTC). [\[4\]](#page-11-11) If a digraph D has minimum out-degree at least $2r - 1$, then D contains r disjoint cycles.

For $r = 1$, BTC is trivial. In 1983, Thomassen [\[25\]](#page-12-7) proved it for $r = 2$.

Theorem 7. [\[25\]](#page-12-7) Every digraph with $\delta^+ \geq 3$ contains two disjoint cycles.

In 2009, Lichiardopol, Por and Sereni [\[24\]](#page-12-8) proved it for $r = 3$.

Theorem 8. [\[24\]](#page-12-8) Every digraph with $\delta^+ \geq 5$ contains three disjoint cycles.

For $r \geq 4$, BTC still remains open. In 2014, Bang-Jensen, Bessy and Thomassé [\[3\]](#page-11-12) proved BTC for tournaments. In 2015, Bai, Li, and Li [\[2\]](#page-11-13) proved the conjecture for bipartite tournaments. In 2020, R. Li et al. [\[23\]](#page-12-9) proved BTC for local tournaments. Here, we consider BTC for k-transitive oriented graphs, and we obtain the following result.

Theorem 9. Let D be a k-transitive oriented graph with $3 \leq k \leq 11$. If $\delta^+ \geq 2r - 1$, then D contains r disjoint cycles.

Proof. If $\delta^+ < 7$, then $r \in \{1, 2, 3\}$. Hence the proof follows from Theorems [7,](#page-9-1) [8.](#page-9-2) For $\delta^+ \geq 7$, we consider T a terminal strong component of D. Clearly, we have $\delta_{D[T]}^+ \geq \delta^+ \geq 7$. Hence, by Theorem [4,](#page-3-2) we have $D[T]$ is an extended cycle. Let V_0 be a smallest set of the cyclical partition of $D[T]$. So $|V_0| = \delta_{D[T]}^+$. It is easily seen that $D[T]$ contains a collection of disjoint cycles; each visits the set V_0 once. Thus, D contains at least $\delta^+_{D[T]}$ disjoint cycles. □

3.3. Hamiltonian Cycle

Recall that a hamiltonian cycle of a digraph D is a directed cycle passing through all the vertices of D . In this case we say that the digraph D is hamiltonian. Evidently, an extended cycle $C[X_0, \ldots, X_s]$ is hamiltonian if and only if all X_i 's have the same size, that is, if and only if $C[X_0, \ldots, X_s]$ is a regular digraph. Note that, for regular digraphs, the concepts of connectedness and strong connectedness coincide. Hence by Theorem [4,](#page-3-2) a k-transitive oriented graph with sufficiently large minimum in- or out-degree is hamiltonian if and only if it is a connected regular oriented graph. Therefore, to consider the hamiltonian problem for k-transitive oriented graphs, it suffices to study the cases for small minimum in- or out-degree.

It is easily seen that a 3-transitive oriented graph is hamiltonian if and only if it is connected and 1-regular, that is, if and only if it is a directed triangle since δ^+ and δ^- are at most 1.

For $k \geq 4$ with $|V(D)|$ at least $k+1$, the regularity and the hamiltonicity of a ktransitive oriented graph D force $\delta^+ \geq 2$ and $\delta^- \geq 2$. Thus by Theorem [4,](#page-3-2) for $k \in \{4, 5\}$, we have D is hamiltonian if and only if D is an extended cycle, that is, if and only if D is connected and regular.

For $k = 6$. Since a 6-transitive oriented graph D is an extended cycle when $\delta^+ \geq 3$, it only remains to verify that if D is connected and 2-regular, then D is hamiltonian. The proof of this case is straightforward. Actually, using Lemma [2](#page-3-3) and the fact that D is 6-transitive as well as D is 2-regular, we proved that D has a cycle of length greater than 6, which implies that D is an extended cycle and therefore D is hamiltonian since it is regular. Another shorter proof of this case is obtained by using the well-known fact that a regular oriented graph has a cycle factor (a collection of vertex-disjoint cycles that covers the vertex set of the digraph).

For future research, we propose the following conjecture.

Conjecture 3.3. Let k be an integer such that $k \geq 4$ and let D be a k-transitive oriented graph with $|V(D)| \geq k+1$. There exists a hamiltonian cycle in D if and only if D is connected and regular.

Conflict of Interest: The authors declare that they have no conflict of interest.

Data Availability: Data sharing is not applicable to this article as no data sets were generated or analyzed during the current study.

References

- [1] D. Al-Mniny and S. Ghazal, The second neighborhood conjecture for oriented *graphs missing a* $\{C_4, \overline{C_4}, S_3, \text{chair and } \overline{\text{chair}}\}$ -free graph, Australas. J. Comb. 81 (2021), no. 1, 58–88.
- [2] Y. Bai, B. Li, and H. Li, Vertex-disjoint cycles in bipartite tournaments, Discrete Math. 338 (2015), no. 8, 1307–1309. https://doi.org/10.1016/j.disc.2015.02.012.
- [3] J. Bang-Jensen, S. Bessy, and S. Thomassen, Disjoint 3-cycles in tournaments: A proof of the Bermond–Thomassen conjecture for tournaments, J. Graph Theory 75 (2014), no. 3, 284–302.
	- https://doi.org/10.1002/jgt.21740.
- [4] J.C. Bermond and C. Thomassen, Cycles in digraphs– a survey, J. Graph Theory 5 (1981), no. 1, 1–43. https://doi.org/10.1002/jgt.3190050102.
- [5] M. Cary, Vertices with the second neighborhood property in Eulerian digraphs, Opuscula Math. 39 (2019), no. 6, 765–772. https://doi.org/10.7494/OpMath.2019.39.6.765.
- [6] M. Daamouch, Seymour's second neighborhood conjecture for 5-anti-transitive oriented graphs, Discrete Appl. Math. 285 (2020), 454–457. https://doi.org/10.1016/j.dam.2020.06.011.
- [7] , Seymour's second neighborhood conjecture for some oriented graphs with no sink, Discrete Math. Lett. 4 (2020), 19–22.
- $[8]$, Seymour's second neighborhood conjecture for m-free, k-transitive, kanti-transitive digraphs and some approaches, Discrete Appl. Math. 304 (2021), 332–341.

https://doi.org/10.1016/j.dam.2021.08.011.

- [9] S. Dara, C.F. Mathew, J. Dalu, and N. Narayanan, Extending some results on the second neighborhood conjecture, Discrete Appl. Math. **311** (2022), 1–17. https://doi.org/10.1016/j.dam.2021.12.034.
- [10] D. Fidler and R. Yuster, Remarks on the second neighborhood problem, J. Graph Theory 55 (2007), no. 3, 208–220. https://doi.org/10.1002/jgt.20229.
- [11] D.C. Fisher, Squaring a tournament: A proof of Dean's conjecture, J. Graph Theory 23 (1996), no. 1, 43–48.
- [12] H. Galeana-Sánchez and C. Hernández-Cruz, *Quasi-transitive digraphs and their* extensions, Classes of Directed Graphs, Springer, 2018, pp. 341–404.
- [13] P.R. García-Vázquez and C. Hernández-Cruz, Some results on λ -transitive digraphs, Discuss. Math. Graph Theory 37 (2017), no. 1, 117–129. http://doi.org/10.7151/dmgt.1922.
- [14] S. Ghazal, Seymour's second neighborhood conjecture for tournaments missing a *generalized star*, J. Graph Theory 71 (2012) , no. 1, 89–94.

https://doi.org/10.1002/jgt.20634.

[15] \ldots , A contribution to the second neighborhood problem, Graphs Combin. 29 (2013), no. 5, 1365–1375.

https://doi.org/10.1007/s00373-012-1192-9.

[16] Z.R. Hassan, I.F. Khan, M.I. Poshni, and M. Shabbir, Seymour's second neighborhood conjecture for 6-antitransitive digraphs, Discrete Appl. Math. 292 (2021), 59–63.

https://doi.org/10.1016/j.dam.2020.12.026.

- [17] C. Hernández-Cruz, 3-transitive digraphs, Discuss. Math. Graph Theory 32 (2012), no. 2, 205–219. http://doi.org/10.7151/dmgt.1613.
- $[18]$, 4-transitive digraphs I: The structure of strong 4-transitive digraphs,
- Discuss. Math. Graph Theory 33 (2013), no. 2, 247–260. http://doi.org/10.7151/dmgt.1645.
- [19] C. Hernández-Cruz and H. Galeana-Sánchez, k-kernels in k-transitive and kquasi-transitive digraphs, Discrete Math. 312 (2012), no. 16, 2522–2530. https://doi.org/10.1016/j.disc.2012.05.005.
- [20] C. Hernández-Cruz and J.J. Montellano-Ballesteros, Some remarks on the structure of strong k-transitive digraphs, Discuss. Math. Graph Theory 34 (2014), no. 4, 651–671.

http://doi.org/10.7151/dmgt.1765.

- [21] B. Jackson, Long paths and cycles in oriented graphs, J. Graph Theory 5 (1981), no. 2, 145–157. https://doi.org/10.1002/jgt.3190050204.
- [22] Y. Kaneko and S.C. Locke, The minimum degree approach for Paul Seymour's distance 2 conjecture, Congr. Numer. 148 (2001), 201–206.
- [23] R. Li and B. Sheng, The second neighbourhood for bipartite tournaments, Discuss. Math. Graph Theory **39** (2019), no. 2, 555–565. http://doi.org/10.7151/dmgt.2018.
- [24] N. Lichiardopol, A. Pór, and J.S. Sereni, A step toward the Bermond–Thomassen conjecture about disjoint cycles in digraphs, SIAM J. Discrete Math. 23 (2009), no. 2, 979–992.

https://doi.org/10.1137/080715792.

[25] C. Thomassen, Disjoint cycles in digraphs, Combinatorica 3 (1983), no. 3, 393– 396.

https://doi.org/10.1007/BF02579195.