[1] G. Abrams, P. Ara, and M.S. Molina, Leavitt Path Algebras. Lecture Notes in Mathematics, vol. 2191, Springer-Verlag, London, 2017.
[3] G. Abrams and B. Schoonmaker, Leavitt Path Algebras of Cayley Graphs Arising from Cyclic Groups, In Noncommutative Rings and their Applications (S. Dougherty, A. Facchini, A. Leroy, E. Puczylowski, and P. Solé, eds.), Con-
temporary Mathematics, United States of America, 2015, pp. 1–10.
[5] P. Ara and E. Pardo, Stable rank of Leavitt path algebras, Proc. Am. Math. Soc. 136 (2008), no. 7, 2375–2386.
[6] M.R. Darafsheh and N.S. Poursalavati, On the existence of the orthogonal basis of the symmetry classes of tensors associated with certain groups, SUT J. Math. 37 (2001), no. 1, 1–17.
https://doi.org/10.55937/sut/1017153423
[8] S. Das, M.K. Sen, and S.K. Maity, Grothendieck groups of purely infinite simple Leavitt path algebras for punctured power graphs of finite groups, J. Algebra Appl. 22 (2023), no. 11, Article ID: 2350234.
https://doi.org/10.1142/S0219498823502341
[9] J. Gallian, Contemporary Abstract Algebra, Seventh Edition, Chapman and Hall/CRC, 2010.
[10] G. James and M. Liebeck, Representations and Characters of Groups, Second Edition, Cambridge University Press, Cambridge, 2001.
[12] W.G. Leavitt, The module type of a ring, Trans. Am. Math. Soc. 103 (1962), no. 1, 113–130.