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Abstract: A total coalition in a graph G = (V,E) consists of two disjoint sets of

vertices V1 and V2, neither of which is a total dominating set but whose union V1 ∪V2,

is a total dominating set. A total coalition partition in a graph G of order n = |V |
is a vertex partition τ = {V1, V2, . . . , Vk} such that every set Vi ∈ τ is not a total

dominating set but forms a total coalition with another set Vj ∈ τ which is not a total

dominating set. The total coalition number TC(G) equals the maximum order k of a
total coalition partition of G. In this paper, we determine the total coalition number

of all cubic graphs of order n ≤ 10.
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1. Introduction

Domination in graphs is one of the most studied areas in graph theory. The explosive

growth of this field since 1998 has continued, and today several papers have been

published on domination in graphs. Given a graph G, recall that a dominating set

S of a graph G is a subset D of V such that every vertex in V − D is adjacent to

at least one member of D. The minimum cardinality of all dominating sets of G is

called the domination number of G and is denoted by γ(G). A set S ⊆ V is a total

dominating set of a graph G with no isolated vertex, if every vertex in V has at least

one neighbour in S. The cardinality of a minimum total dominating set in G is called

the total domination number of G and is denoted by γt(G). Total domination in

graphs was introduced in 1980 by Cockayne, Dawes, and Hedetniemi [6]. Domination

and its variations have been extensively studied in the literature and surveyed in

[15–17].

A domatic partition (or total domatic partition) is a partition of the vertex set into

dominating sets (or total dominating sets). Formally, the domatic number (or total



602 Total coalitions of cubic graphs of order at most 10

domatic number) d(G) (or dt(G)) equals the maximum order k of a vertex partition,

called a domatic partition (total domatic partition), π = {V1, V2, . . . , Vk} such that

every set Vi is a dominating set (or total dominating set) in G. The domatic number

of a graph was introduced by Cockayne and Hedetniemi [7] and the total domatic

number was introduced by Cockayne, Dawes and Hedetniemi in [6]. For more details

on the domatic number and total domatic number refer to e.g., [19–21].

In 2020, a new concept called coalitions in graphs was introduced by Hedetniemi et.

al [11]. A coalition in a graph G = (V,E) consists of two disjoint sets V1 and V2
of vertices, such that neither V1 nor V2 is a dominating set, but the union V1 ∪ V2
is a dominating set of G. A coalition partition in a graph G of order n = |V | is a

vertex partition P = {V1, V2, . . . , Vk} such that every set Vi either is a dominating

set consisting of a single vertex of degree n− 1, or is not a dominating set but forms

a coalition with another set Vj which is not a dominating set. The coalition number

C(G) of a graph G equals the maximum order of a coalition partition of G.

Unless otherwise stated, in what follows let G be an isolate-free graph. Let U1 ⊂ V

and U2 ⊂ V denote two (disjoint) subsets of V .

A total coalition consists of two disjoint sets U1 and U2, neither of which is a total

dominating set but the union U1 ∪ U2 is a total dominating set. A total coalition

partition is a vertex partition τ = {U1, U2, . . . , Uk} no set of which is a total domi-

nating set but every set Ui forms a total coalition with at least one other set Uj . For

simplicity, we will call a total coalition partition a tc-partition. The total coalition

number TC(G) equals the maximum order of a total coalition partition of G.

Total coalitions in graphs were first studied in 2023 by Alikhani, Bakhshesh and

Golmohammadi [1]. For some recent papers on coalitions in graphs see [2, 3, 5, 10, 12–

14]. While many different types of dominating sets have been investigated for cubic

graphs [8, 9, 18], recently, Alikhani, Golmohammadi and Konstantinova studied the

coalition numbers of cubic graphs of order at most 10 [3]. In this paper, we investigate

the total coalition numbers of cubic graphs of order at most 10.

This paper is organized as follows. In the next section, several known results about

total coalitions are listed. In Section 3, we determine the total coalition numbers of

all cubic graphs of order at most 10.

2. Preliminaries

In this section, we recall three important results which will be the key ingredients for

our proofs.

Theorem 1. [1] If G is an isolate-free graph with no full vertex and minimum degree
δ(G), then TC(G) ≥ δ(G) + 1.

Theorem 2. [5] For any isolate-free graph G with maximum degree ∆(G), TC(G) ≤
(∆(G)+2)2

4
.
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Figure 1. Petersen graph P .

We next present a key result, which gives us the number of total coalitions involving

any set in a tc-partition of G.

Theorem 3. [1] Let G be a graph with maximum degree ∆(G), and let π be a TC(G)-
partition. If X ∈ π, then X is in at most ∆(G) total coalitions.

Now, we present an observation with regards the Petersen graph (See Figure 1) which

will be useful for our proofs.

Observation 4. (i) For the Petersen graph P , γt(P ) = 4.

(ii) For the Petersen graph there are precisely 10 minimum total dominating sets, each
one consists of the closed neighborhood of one of the 10 vertices.

(iii) Any two minimum total dominating sets of the Petersen graph have either one or two
vertices in common.

(iv) Any two total dominating sets of the Petersen graph of order 5 have at most three
vertices in common.

(v) Any total coalition in the Petersen graph consisting of two sets of cardinality 2 consists
of consists of a pair of adjacent vertices and a pair of non-adjacent vertices.

3. Main results

In this section we determine the total coalition number of cubic graphs of order at

most 10. Trivially, there is only one cubic graph of order 4, namely the complete

graph K4. It is clear that the singleton partition of K4 is a tc-partition of order 4,

and thus, TC(K4) = 4. We consider cubic graphs of order 6 in the next subsection.

3.1. Cubic graphs of order 6

There are exactly two cubic graphs of order 6, which are denoted by G1, G2 in Figure 2

(see [3]).
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Figure 2. Cubic graphs of order 6.

Proposition 1. The total coalition number of the cubic graphs of order 6 is 6.

Proof. Using Theorems 1 and 2, we have 4 ≤ TC(G) ≤ 6. We first compute TC(G)

for the graph G1. We establish a partition of order 6. Let π =
{
V1 = {1, 4}, V2 =

{2, 3}, V3 = {5, 6}
}

be a total domatic partition of G1, where dt(G1) = 3. Note that

if we partition a minimal total dominating set into two non-empty sets, we obtain two

non-total dominating sets that together form a total coalition. As a result, we can

divide each non-singleton set V1 = {1, 4}, V2 = {2, 3} and V3 = {5, 6} into two sets

such as V1,1 = {1}, V1,2 = {4}, V2,1 = {2}, V2,2 = {3}, V3,1 = {5}, and V3,2 = {6}.
Each of V1,1, V2,1 and V3,1 forms a total coalition with V1,2, V2,2 and V3,2, respectively.

Thus, TC(G1) ≥ 6. Moreover, as seen previously, TC(G1) ≤ 6, and so we have

TC(G1) = 6. Therefore, we can form a maximum tc-partition of G1 of order 6 as

follows: τ =
{
V1,1 = {1}, V1,2 = {4}, V2,1 = {2}, V2,2 = {3}, V3,1 = {5}, V3,2 = {6}

}
.

An identical argument shows that TC(G2) = 6.
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Figure 3. Cubic graphs of order 8.
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3.2. Cubic graphs of order 8

In this subsection, we determine the total coalition numbers of cubic graphs of order

8. There are exactly 6 cubic graphs of order 8 which are denoted by G1, G2, . . . , G6

in Figure 3 (see [3]).

Theorem 5. For the cubic graphs G1, G2, . . . , G6 of order 8 (Figure 3) we have:

TC(Gi) =


4 i = 1, 5, 6
5 i = 2, 4
6 i = 3.

Proof. To prove Theorem 5, we partition the proof into three parts as follows.

(i) By Theorems 1 and 2, we have 4 ≤ TC(G) ≤ 6. We show that there is a

tc-partition of order 6 for the graph G3. Assume that π =
{
V1 = {1, 2, 8}, V2 =

{3, 4, 5, 6, 7}
}

be a total domatic partition of the graph G3, where dt(G3) = 2.

Since any partition of a minimal total dominating set into two non-empty sets

creates two non-total dominating sets whose union produces a total coalition,

so the minimal total dominating set V1 = {1, 2, 8} can be divided into two sets

such as V1,1 = {1, 2}, V1,2 = {8}, which together create a total coalition. Now

we construct a partition τ , starting with the sets V1,1 = {1, 2} and V1,2 = {8}.
To obtain the other sets of this partition τ , let V ′ = {4, 5, 6} ⊂ V2 be a minimal

total dominating set contained in V2. So, we shall partition it into two non-total

dominating sets V ′
1 = {5, 6} and V ′

2 = {4}, add these two sets to τ . The set

V ′′ = {3, 7} remains which is not a total dominating set, else there are at least

3 disjoint total dominating sets in G3, a contradiction, because dt(G3) = 2. We

divide the set V ′′ into two sets such as V ′′
1 = {3}, V ′′

2 = {7}. But V ′′
1 = {3}

forms a total coalition with V1,1 = {1, 2} and V ′′
2 = {7} forms a total coalition

with V ′
1 = {5, 6}. So, we can add V ′′

1 = {3} and V ′′
2 = {7} to τ . Hence, we

have TC(G3) ≥ 6. As before, we know that TC(G3) ≤ 6. Thus, TC(G3) = 6.

Therefore, we can create a maximal tc-partition of G3 of order 6 as follows.

τ =
{
V1,1 = {1, 2}, V1,2 = {8}, V ′

1 = {5, 6}, V ′
2 = {4}, V ′′

1 = {3}, V ′′
2 = {7}

}
.

(ii) We next compute TC(G) for the graph G4. We first show there is no tc-partition

of order 6 for G4. For this purpose, assume that τ1 =
{
V1, V2, . . . , V6

}
is a tc-

partition of G4. We consider two cases as follows.

Case 1. Suppose that there are 5 singleton sets in the partition τ1. Then

exactly one set of τ1 must contain three vertices. Without loss of generality, let

|V1| = 3 and |Vj | = 1 for 2 ≤ j ≤ 6. Suppose D is a total dominating set in the

graph G4. Since |D| ≥ 3, no two singleton sets form a total coalition. It holds

that each of Vj for 2 ≤ j ≤ 6 must from a total coalition with V1, contradicting

Theorem 3, since by Theorem 3 V1 is in at most ∆(G4) = 3 total coalitions.

Therefore, we cannot establish a tc-partition of order 6 and so TC(G4) < 6.
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Case 2. Assume that there are 4 singleton sets in the partition and it has

exactly two sets of τ1 must contain two vertices. Without loss of generality, let

|V1| = |V2| = 2 and |Vj | = 1 for 3 ≤ j ≤ 6. Suppose D is a total dominating

set in the graph G4. Since |D| ≥ 3, no two singleton sets form a total coalition.

Now every set Vj for 3 ≤ j ≤ 6 must produce a total coalition with V1 or V2. It

can be seen that there are only two minimal total dominating sets of order 3,

namely U = {1, 2, 8} and W = {4, 5, 6}. So, each of V1 and V2 can be in a total

coalition with only one singleton set. Therefore, neither of the remaining two

singleton sets can form a total coalition with V1 or V2. This is a contradiction.

It follows that the graph G4 has no tc-partition of order 6. Thus, TC(G4) < 6.

Now, we shall construct a tc-partition of order 5 for the graph G4. Let π′ ={
V1 = {1, 2, 8}, V2 = {3, 4, 5, 6, 7}

}
be a total domatic partition of G4, where

dt(G4) = 2. It is worth mentioning that by splitting a minimal total dominating

set into two non-empty sets, we obtain two non-total dominating sets, which

combine to form a total coalition. Thus, we can partition the minimal total

dominating set V1 = {1, 2, 8} into two sets V1,1 = {1, 2} and V1,2 = {8}, which

form a total coalition. Now we create a partition τ ′ of sets and put the sets

V1,1 = {1, 2} and V1,2 = {8} in this partition. Since V ′
2 = {4, 5, 6} ⊂ V2 is a

minimal total dominating, so to obtain the other sets of partition τ ′ we can

partition it into two non-total dominating sets V ′
2,1 = {4, 5} and V ′

2,2 = {6},
and add these two sets to τ ′. The set V ′′ = {3, 7} remains which is not a total

dominating set, else there are at least 3 disjoint total dominating sets in G4, a

contradiction, because dt(G4) = 2. The set V ′′ produces a total coalition with

the set V ′
2,1 = {4, 5}, so we can add V ′′ to T ′. So, we observe that TC(G4) ≥ 5.

Moreover, as before, we have TC(G4) ≤ 5. Then, TC(G4) = 5. It follows that

we have a maximal tc-partition of G4 of order 5 as follows.

τ ′ =
{
V1,1 = {1, 2}, V1,2 = {8}, V ′

2,1 = {4, 5}, V ′
2,2 = {6}, V ′′ = {3, 7}

}
.

Now, we determine TC(G) for the graph G2. It can be seen that G2 has six

minimum total dominating sets such as {1,2,5}, {1,5,8}, {2,3,4}, {2,6,7}, {3,4,8}
and {6,7,8}. Now, we may assume that the following three pairs of vertices are

the only pairs of vertices that can form a total coalition with two singleton sets:

(i) V1 = {1, 5} can appear with each of V4 = {2} and V5 = {8}; (ii) V2 = {3, 4}
can appear with each of V4 = {2} and V5 = {8}, and finally (iii) V3 = {6, 7} can

appear with each of V4 = {2} and V5 = {8}. From this it follows that G2 does

not have a tc-partition of order 6. The only two possible sizes of a tc-partition

of order 6 are 3, 1, 1, 1, 1, 1, which is not possible because of Theorem 3, and

2, 2, 1, 1, 1, 1, which is not possible because no set of four singleton sets exists

which can combine with either of two sets of size two.

However, τ ′′ =
{
V1 = {1, 5}, V2 = {3, 4}, V3 = {6, 7}, V4 = {2}, V5 = {8}

}
is a

tc-partition of G2 of order 5; thus, TC(G2) = 5.

(iii) We next determine TC(G) for the graph G1. From our previous discussions,

we can show that there is no tc-partition of order 6 for G1. We next show
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there is no tc-partition of order 5 for G1. Assume that G1 has a tc-partition

τ2 =
{
V1, V2, . . . , V5

}
. We consider the following three cases.

Case 1. Assume that there are 4 singleton sets in τ2 and exactly one set of

τ2 contains four vertices. Without loss of generality, suppose that |V1| = 4 and

|Vj | = 1 for 2 ≤ j ≤ 5. Let D be a total dominating set in the graph G1. Since

|D| ≥ 4, no two singleton sets form a total coalition. It follows that each of Vj
for 2 ≤ j ≤ 5 must be in a total coalition with V1. This contradicts Theorem 3.

Then, there is no tc-partition with order 5. Hence, TC(G1) < 5.

Case 2. Suppose that there are 2 singleton sets in the partition and then

exactly three sets of τ2 must contain two vertices. Without loss of generality,

we may assume that |V1| = |V2| = |V3| = 2 and |Vj | = 1 for 4 ≤ j ≤ 5. Let D

be a total dominating set in the graph G1. Since |D| ≥ 4, no two singleton sets

produce a total coalition. Moreover, neither V4 nor V5 produce a total coalition

with V1, V2, or V3, this is a contradiction. Thus, we cannot create a tc-partition

of order 5 in this case. Then, TC(G1) < 5.

Case 3. Suppose that the tc-partition τ2 contains 3 singleton sets, one set with

two vertices and one set with three vertices. Without loss of generality, we may

assume that |V1| = 3, |V2| = 2 and |Vj | = 1 for 3 ≤ j ≤ 5. Let D be a total

dominating set in the graph G1. Since |D| ≥ 4, no two singleton sets produce a

total coalition. Moreover, no singleton set can produce a total coalition V2. It

holds therefore that each of Vi for 2 ≤ i ≤ 5 must from a total coalition with V1,

contradicting Theorem 3. Consequently, there is no tc-partition of G1 of order

5. Thus, TC(G1) < 5.

Based on all cases, we conclude that TC(G1) ≤ 4. Furthermore, from our

previous discussions, it is straightforward to verify that TC(G1) ≥ 4. Hence,

TC(G1) = 4. Now, we establish a tc-partition of order 4 such as the following.

Note that V1 and V4 produce total coalitions with each of V2 and V3.

τ ′′′ =
{
V1 = {1, 7}, V2 = {2, 4}, V3 = {3, 5}, V4 = {6, 8}

}
.

The argument used above for G1 can also be applied to prove that TC(G5) =

TC(G6) = 4.

3.3. Cubic graphs of order 10

In this subsection, we consider the cubic graphs of order 10 and study their to-

tal coalition numbers. There are exactly 21 cubic graphs of order 10, denoted by

G1, G2, . . . , G21 in Figure 4 (see [3, 4]). In particular, the graph G17 is isomorphic to

the Petersen graph P .
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Figure 4. Cubic graphs of order 10.
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Theorem 6. For the cubic graphs G1, G2, . . . , G21 of order 10 (Figure 4) we have:

TC(Gi) =


4 i = 12, 17
5 i = 1, 8, 9, 14, 19, 20
6 otherwise.

Proof. In order to prove Theorem 6, we shall divide the proof into three parts as

follows.

(i) To show that TC(Gi) = 4 for i = 12, 17, let us pick the graph G17. Now, we first

need to prove that TC(G17) < 6. Since the graph G17 and the Petersen graph

P are isomorphic, we shall expose that none of the following cases are possible

for the Petersen graph. Assume that P has a tc-partition τ3 =
{
V1, V2, . . . , V6

}
.

Now, we consider the following cases.

Case 1. We may assume that there are five singleton sets and exactly one set

of τ3 must consist of five vertices. Without loss of generality, let |V1| = 5 and

|Vj | = 1 for 2 ≤ j ≤ 6. Since P has no total dominating set with less than four

vertices, so no two singleton sets produce a total coalition. It follows that each

of Vj for 2 ≤ j ≤ 6 must from a total coalition with V1, contradicting Theorem

3, since by Theorem 3 V1 is in at most ∆(P ) = 3 total coalitions. So, we cannot

create a tc-partition of order 6. Hence, TC(P ) < 6.

Case 2. We suppose |V1| = 4, |V2| = 2 and |Vj | = 1 for 3 ≤ j ≤ 6. Since

γt(P ) = 4, so no two singleton sets can from a total coalition. Moreover, no

singleton set can be in a total coalition with V2. It holds that each of Vi for

2 ≤ i ≤ 6 must be in a total coalition with V1. This contradicts Theorem 3.

Then, there is no tc-partition of order 6. So, TC(P ) < 6.

Case 3. Let |V1| = |V2| = 3 and |Vj | = 1 for 3 ≤ j ≤ 6. Since each of singleton

sets must form a total coalition either of the two sets of cardinality 3, so it can

be seen that at least two minimum total dominating sets have three vertices

in common, contradicting Part (iii) of Observation 4. That means there is no

tc-partition of order 6. Then, TC(P ) < 6.

Case 4. Assume that |V1| = 3, |V2| = |V3| = 2 and |Vj | = 1 for 4 ≤ j ≤ 6.

As before, we know that no two singleton sets can produce a total coalition.

Furthermore, no singleton set forms a total coalition with V2 and V3. Now, we

consider the following subcases.

Subcase 4.1. Let V2 and V3 do not form a total coalition. Therefore, each of

Vi for 2 ≤ i ≤ 6 must form a total coalition with V1, contradicting Theorem 3.

Subcase 4.2.. Suppose that V2 and V3 form a total coalition. Since each

of singleton sets must form a total coalition with V1, so it holds that three

minimum total dominating sets have three vertices in common, contradicting

Part (iii) of Observation 4.

Based on both subcases, we conclude that P has no tc-partition of order 6.

Hence, TC(P ) < 6.
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Case 5. Let |Vj | = 2 for 1 ≤ j ≤ 4 and |V5| = |V6| = 1. By Part (i) of

Observation 4, we have γt(P ) = 4. So, no union of any two sets has cardinality

4. Consequently, there is no tc-partition of order 6. Then, TC(P ) < 6.

Now, we demonstrate that the Petersen graph has no tc-partition of order 5.

To achieve this aim, we show that none of the following cases are possible. Let

P have a tc-partition τ4 =
{
V1, V2, . . . , V5

}
. Now, we consider the following

subcases.

Subcase 5.1. Let |V1| = 6 and |Vj | = 1 for 2 ≤ j ≤ 5. Suppose D is a total

dominating set in the graph P . Since |D| ≥ 4, so no two singleton sets form

a total coalition. It holds that each of Vj for 2 ≤ j ≤ 5 must from a total

coalition with V1, contradicting Theorem 3, since by Theorem 3 V1 is in at most

∆(P ) = 3 total coalitions. Thus, we cannot establish a tc-partition of order 5.

Then, TC(P ) < 5.

Subcase 5.2. Assume that |V1| = 5, |V2| = 2 and |Vj | = 1 for 3 ≤ j ≤ 5. As

seen early, no two singleton sets can produce a total coalition. Furthermore, no

singleton set forms a total coalition with V2. Thus, every set Vi for 2 ≤ i ≤ 5

must be in a total coalition with V1. This contradicts Theorem 3. It follows

that P has no tc-partition of order 5. Hence, TC(P ) < 5.

Subcase 5.3. Let |V1| = 4, |V2| = 3 and |Vj | = 1 for 3 ≤ j ≤ 5. From

our previous discussions, each of singleton sets must form a total coalition with

V1 or V2. This would give rise to two minimum total dominating sets having

three vertices in common, contradicting Part (iii) of Observation 4 or there

would be two total dominating sets of order 5 having four vertices in common,

contradicting Part (iv) of Observation 4. So, we observe that there is no tc-

partition of order 5. Then, TC(P ) < 5.

Subcase 5.4. Let |V1| = 4, |V2| = |V3| = 2 and |Vj | = 1 for 4 ≤ j ≤ 5. By Part

(i) of Observation 4, we have γt(P ) = 4. Thus, no union of any two singleton

sets has cardinality 4. Also, no singleton set can produce a total coalition with

V2 and V3. Now, we consider the following situations.

5.4.1. We may assume that V2 and V3 do not form a total coalition. There-

fore, each of Vi for 2 ≤ i ≤ 5 must form a total coalition with V1, contradicting

Theorem 3.

5.4.2. Let V2 and V3 form a total coalition. Since each of Vj for 4 ≤ j ≤ 5

must form a total coalition with V1, so it follows that two total dominating sets

of order 5 have four vertices in common, contradicting Part (iv) of Observation

4.

Based on both subcases, we conclude that there is no tc-partition of order 5.

So, TC(P ) < 5.
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Subcase 5.5. Suppose that |V1| = |V2| = 3, |V3| = 2 and |Vj | = 1 for 4 ≤ j ≤ 5.

As before, each of Vi for 3 ≤ i ≤ 5 must be in a total coalition with V1 or V2.

We may assume that there are two subcases as follows.

5.5.1. Without less of generality, let V1 and V4 form a total coalition and

V1 and V5 form a different total coalition, but this contradicts Part (iii) of

Observation 4, since there would be two different minimum total dominating

sets have three vertices in common.

5.5.2. V1 and V4 form a total coalition and V2 and V5 form a total coali-

tion, but this would create two minimum dominating sets having no vertices in

common, again contradicting Part (iii) of Observation 4.

Based on both subcases, there is no tc-partition of order 5. Hence, TC(P ) < 5.

Subcase 5.6. Assume that |V1| = 3, |V2| = 1 and |Vj | = 2 for 3 ≤ j ≤ 5. By

Part (iii) of Observation 4, no two doubleton sets can form a total coalition,

else we would have two minimum total dominating sets having no vertices in

common, a contradiction. Thus, each of Vj for 3 ≤ j ≤ 5 must form a total

coalition with V1. Moreover, from previous our discussions, V2 must from total

coalition with V1. Therefore, each of Vi for 2 ≤ i ≤ 5 must be in a total coalition

with V1. This contradicts Theorem 3. So, we observe that P has no tc-partition

of order 5. Then, TC(P ) < 5.

Subcase 5.7. Let |Vj | = 2 for 1 ≤ j ≤ 5. In this case each set having two

vertices must form a minimum total dominating set with another set having two

vertices. We consider two subcases as follows.

5.7.1. Without less of generality, let each of the pairs V1 ∪ V2 and V3 ∪ V4 be

total coalition partners but this is a contradiction since any two minimum total

dominating sets must have a non-empty intersection.

5.7.2. Each of V2, V3, V4, and V5 forms a total coalition with V1. Thus, from

Part (v) of Observation 4, the pairs in V2, V3, V4, and V5 must either all be

adjacent pairs or all be non-adjacent pairs. If V1 consists of an adjacent pair,

then it can only be in two minimum total dominating sets with non-adjacent

pairs, which contradicts the fact that each non-adjacent pair in V2, V3, V4, and

V5 must be in a minimum total dominating set with the adjacent pair in V1.

This is not possible. Conversely, if V1 consists of a non-adjacent pair, then if

this pair is in two minimum total dominating pairs with adjacent pairs, then the

graph would have a 4-cycle, but a 4-cycle does not exist in the Petersen graph.

Based on both subcases, the Petresen graph P has no tc-partition of order 5.

Then, TC(P ) < 5.

To complete part (i), since the Petersen graph P has neither a tc-partition of

order 5, nor a tc-partition of order 6, so TC(P ) = 4. It holds that TC(G17) = 4.

Now, we construct a tc-partition of order 4 for the graph G17 as follows. Note
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that V1 forms a total coalition with each of V2 and V3, and also V3 forms a total

coalition with V4.

τ =
{
V1 = {1, 2, 3}, V2 = {4, 5}, V3 = {6, 7, 8}, V4 = {9, 10}

}
.

Using the same approach, we can show that TC(G12) = 4.

(ii) An identical argument to the one used in part (i) shows that TC(Gi) < 6,

where i ∈ {1, 8, 9, 14, 19, 20}. Now, it suffices to determine the total coalition

number for any graph belonging to {G1, G8, G9, G14, G19, G20}. Without loss

of generality, therefore, we determine TC(G1).

We shall create a tc-partition of G1 of order 5 and show that this partition is a

maximum tc-partition. We first create a total domatic partition. We consider

the total domatic partition π =
{
V1 = {1, 2, 6, 7}, V2 = {3, 4, 5, 8, 9, 10}

}
of G1,

since γt(G1) = 4 and therefore dt(G1) = 2. Regarding any division of a minimal

total dominating set into two non-empty sets creates two non-total dominating

sets whose union produces a total coalition, then it is possible to divide the

minimal total dominating set V1 = {1, 2, 6, 7} into two sets V1,1 = {1, 6} and

V1,2 = {2, 7}, which together form a total coalition. Now we create a tc-partition

τ containing the sets V1,1 = {1, 6} and V1,2 = {2, 7}. To obtain the other sets

of partition τ , say V ′
2 = {3, 5, 8, 10} ⊂ V2 be a minimal total dominating set

contained in V2. We can partition this set into two non-total dominating sets

V ′
2,1 = {3, 5} and V ′

2,2 = {8, 10} and add these two sets to τ . The set V ′′ = {4, 9}
remains which is not a total dominating set, else there are at least 3 disjoint

total dominating sets in G1, a contradiction, because dt(G1) = 2. The set V ′′

forms a total coalition with the set V1,2 = {2, 7}, so we can add V ′′ to τ . Then,

we observe that TC(G1) ≥ 5. Furthermore, as before, we have TC(G1) ≤ 5.

Hence, TC(G1) = 5. And finally we can establish a maximal tc-partition of G

of order 5 as follows.

τ =
{
V1,1 = {1, 6}, V1,2 = {2, 7}, V ′

2,1 = {3, 5}, V ′
2,2 = {8, 10}, V ′′ = {4, 9}

}
.

Using the argument used to obtain the total coalition number of the graph G1,

we can show that the total coalition numbers of the other graphs belonging to

this set of cubic graphs is 5.

(iii) To complete the proof, we proceed to show that TC(Gi) = 6 where i ∈
{2, 3, 4, 5, 6, 7, 10, 11, 13, 15, 16, 18, 21}. Using Theorems 1 and 2, we have 4 ≤
TC(G) ≤ 6. We begin by constructing a tc-partition of G6 of order 6. Let

π′ =
{
V1 = {1, 2, 3, 4}, V2 = {5, 6, 7, 8, 9, 10}

}
be a total domatic partition of

G6, where dt(G6) = 2. As before, we know that by dividing a minimal total

dominating set with more than one element into two non-empty sets, we obtain

two non-total dominating sets that together form a total coalition. Thus, we

can partition the minimal total dominating set V1 = {1, 2, 3, 4} into two sets

V1,1 = {1, 2, 3} and V1,2 = {4}. Now we construct a partition τ ′ and put the

sets V1,1 = {1, 2, 3} and V1,2 = {4} in this partition. For the other sets of
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τ ′, we may consider the minimal total dominating set V ′
2 = {6, 7, 8, 9} ⊂ V2.

Thus, we can partition it into two non-total dominating sets V ′
2,1 = {6, 7, 8} and

V ′
2,2 = {9}, and add these two sets to τ ′. The set V ′′ = {5, 10} remains, which

is not a total dominating set, else there are at least 3 disjoint total dominating

sets in G6, a contradiction, because dt(G6) = 2. If we divide the set V ′′ into

two parts such as V ′′
1 = {5} and V ′′

2 = {10}, it can be seen that V ′′
1 = {5}

can form a total coalition with V ′
2,1 = {6, 7, 8}, and also V ′′

2 = {10} can form

a total coalition with V1,1 = {1, 2, 3}. Hence, we have TC(G6) ≥ 6. Moreover,

as before, we have TC(G6) ≤ 6. Then, TC(G6) = 6. Consequently, we have a

maximal tc-partition of G of order 6 as follows.

τ ′ =
{
V1,1 = {1, 2, 3}, V1,2 = {4}, V ′

2,1 = {6, 7, 8}, V ′
2,2 = {9}, V ′′

1 = {5}, V ′′
2 =

{10}
}
.

Note that the total coalition number for other graphs in this section can be ob-

tained using the same approach. Consequently, we have TC(Gi) = 6 where

i ∈ {2, 3, 4, 5, 7, 10, 11, 13, 15, 16, 18, 21}.

4. Concluding Remarks and Open Problems

In this paper, we have determined the total coalition number of cubic graphs of order

at most 10. We present the following open questions.

1. Characterize all connected cubic graphs G with TC(G) = C(G).

2. Let GP (n, k) be a generalized Petersen graph. Compute the total coalition

number of GP (n, k).

3. There are 85 connected cubic graphs of order 12. Compute the total coalition

number of connected cubic graphs of order 12.
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