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of generalized Lucas sequences under the residue operation.
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1. Introduction

Matrix theory is rich in special properties, some of such properties are based on its

construction, interrelations in eigenvalues and structure of its invertibility. Based on

its construction, matrices are used in different branches of science as well as in en-

gineering and technologies. One of such area is cryptography [19, 21], where matrix

theory plays a vital role in storing data, efficiency of encryption-decryption and en-

larging the key-spaces. Some recent developments on application of special matrices

in cryptography can be seen in [6, 11, 16, 22, 24].
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It is well known that recursive sequences are defined in the terms of sum, difference

or product (elementary operations) on preceding terms of corresponding sequences.

Nowadays a lot of research work is going on in the direction of generalizing the existing

sequences for higher order as well as generalizing for arbitrary initial values. While

some of the authors made generalizations by considering the same relation but with

different multipliers (constant/arbitrary functions as coefficients), some of such recent

developments and their applications can be seen in [1, 3, 12, 13, 23].

Cerda-Morales [2] defined a new generalized Lucas V (p, q)-matrix similar to the gener-

alized Fibonacci U(1,−1)-matrix which is different from the Fibonacci U(p, q)-matrix

and further, they established some well-known equalities and a Binet-like formula by

matrix method for both generalized sequences. Halici et al. [7], discussed the Fi-

bonacci quaternion matrix by considering entries as n-th Fibonacci quaternion num-

ber and derived some identities like Cassini’s identity, Binet formula, etc. In [20]

Stanimirovic et al. defined a generalization of Fibonacci and Lucas matrices whose

elements are defined by the general second-order non-degenerated sequence and in

some cases, they also obtained inverse for those matrices. Özkan et al. [15] obtained

the terms of n-step Lucas polynomials by using matrices and generalizing the con-

cept and then establishing the relationship between Lucas polynomials and Fibonacci

polynomials. In [18], the authors discussed r-circulant matrices that are special re-

cursive matrices and these matrices can also be considered in the study of formation

of key elements for cryptography.

We know that the well-known sequences Fibonacci and Lucas sequence [9] are given

by recurrence relation fk+2 = fk + fk+1, (k ≥ 0) with initial values 0, 1 and 2, 1,

respectively. Similarly, Tribonacci and Lucas sequences of order three are given by

recurrence relation fk+3 = fk+fk+1+fk+2, (k ≥ 0) with initial values 0, 0, 1 [A000073]

and 3, 1, 3 [A001644], respectively. Matrix representations [9] corresponding to the

above recursive sequences of order two and three have been obtained as follow, where

fk,n represents nth term of the sequence of order k:

[
f2,n+1 f2,n
f2,n f2,n−1

]
,

f3,n+2 f3,n+1 + f3,n f3,n+1

f3,n+1 f3,n + f3,n−1 f3,n
f3,n f3,n−1 + f3,n−2 f3,n−1

 .
These matrices are recursive in nature consisting of many properties based on initial

values of corresponding sequences. For example, let us assume that Qnk be the matrix

of order k representing multiplication of Qk to n times. If we consider initial values

0, 1 for order two and 0, 0, 1 for order three then (Q1
k)n = Qnk holds but for other initial

values, it does not hold, some of such observations has been found in [8, 10, 14, 16, 25].

In this paper, we are working on generalizing the Lucas sequences to higher order

preserving the Fibonacci trace properties (the terms of Lucas sequence are the trace

of the corresponding Fibonacci matrices). Further, we implement these matrices in

the Affine-Hill technique and examine its behavior and strength.

This paper is organized as follows. In Section 2, preliminaries on the cryptographic

scheme, signature scheme and their mathematical formulation are discussed. In Sec-
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tion 3, we establish the generalized Lucas sequence and associated matrix form from

the generalized Fibonacci matrices and discuss some remarkable properties. In Sec-

tion 4, we propose a new algorithm for key exchange and an encryption-decryption

scheme with a numerical example. Finally, in Section 5 we discuss the complexity

and strength of the proposed scheme followed by a conclusion in Section 6.

2. Encryption Scheme and Mathematical Flow

Let us assume that P be the plaintext (p1, p2, ..., pr), K be key matrix (simply key)

and C = (c1, c2, ..., cr) be corresponding ciphertext of sizes 1× rn, r × r and 1× rn,

respectively, where pi and ci are block vectors of size 1 × n. A polygraphic block

cipher equivalent to Hill Cipher [19, 21] refer as Affine-Hill Cipher is described as:

Enc(P ) : ci ≡ (piK +B) (mod p),

Dec(C) : pi ≡ (ci −B)K−1 (mod p),

with (|K|, p) = 1, where B is a 1 × n row vector, p is a prime number and Enc(P )

represents encryption of P and Dec(C) represents decryption of C.

2.1. ElGamal and Signature Scheme

Elgamal cryptosystem [19, 21], proposed by T. Elgamal [5] in 1984 is a public-key

scheme with digital signature whose strength is based on discrete logarithms (closely

related to Deffie-Hellman technique). One of such similar digital signatures is ‘Schnorr

signature scheme’ [19] which minimizes the message based computation required to

generate a signature. Usually, the digital signature scheme involves the use of a private

key for the generation of the digital signature and a public key for its verification

purpose. The design of the Elgamal technique is as encryption is done by user’s

public key while decryption using user’s private key.

2.1.1. Primitive root

Primitive roots [19] play a crucial role in securing strength of cryptographic schemes.

Let n be any positive integer, an integer α is called primitive root of n if αk ≡ 1

(mod n) where k = φ(n) is least positive integer, i.e. there does not exists any

r, 1 ≤ r < k such that αr ≡ 1 (mod n). Further, when α is primitive root of n, the

powers of α, α, α2, α3, ..., αφ(n) are distinct (mod n) and also co-prime to n. Note

that not all integers have primitive roots, in fact integers of the form 2, 4, pk or 2pk,

where p is a odd prime and k ∈ N, have primitive roots.

Similar to the Diffie-Hellman scheme, in the Elgamal technique, the global elements

are the prime p and a primitive root of p. Steps of the Elgamal scheme are discussed

in the following subsubsections.
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2.1.2. Public key setup

Let us assume that p be any odd prime number, α be a primitive root of p and an

integer D is chosen such that 1 < D < φ(p). Now, assign E1 = α and E2 = ED1
(mod p). Then pk(p,E1, E2) will be made as a public key and chosen D is kept as a

secret key. Elgamal technique can be understood as follows. Suppose two parties Alice

and Bob want to communicate with each other, then they go through the following

path:

2.1.3. Key exchanging

Alice (who wish to send a message to Bob) first choose a random integer e such that

1 < e < φ(p) and then generates a signature key (say s) using public key pk(p,E1, E2)

where s = Ee1 (mod p). Now she computes her secret key λ for encryption as λ = Ee2
(mod p). Thus, Alice generates the parameters (λ, s) of an encryption key using Bob’s

public key (p,E1, E2), then encrypt the plaintext with the encryption key and send

(λ,C) to Bob, where C is the corresponding ciphertext.

2.1.4. Key recover by Bob

On the other side Bob after receiving (s, C) from Alice, recover the same parameters

(λ, s) of encryption key using his secret key sk(D) as:

sD (mod p) ≡ (Ee1)D (mod p)

≡ (ED1 )e (mod p) ≡ (E2)e (mod p) = λ. (2.1)

Thus, Bob and Alice agree on the same parameters (λ, s) of encryption key, i.e. the

parameters (λ, s) of encryption key exchanged securely and using these parameters,

Bob can decrypt the ciphertext C and recover the original plaintext P .

3. Generalized Lucas Sequences and Matrix Construction

In this section, we discuss about the construction of the generalized Lucas sequences

and matrices. Then, we present some algebraic properties for generalized Lucas ma-

trices and connection with the generalized Fibonacci matrices.

3.1. Generalized Fibonacci matrices (GFM)

For n ∈ Z, the generalized Fibonacci sequences {fk,n} of order k ≥ 2 is defined as

fk,k+n = fk,k+n−1 + fk,k+n−2 + fk,k+n−3 + · · ·+ fk,n+1 + fk,n, (3.1)

where fk,0 = fk,1 = fk,2 = · · · = fk,k−2 = 0 and fk,k−1 = 1.
The corresponding generalized Fibonacci matrix of order k [16] is denoted by Qnk and
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defined as

Qn
k =


fk,k+n−1 fk,k+n−2 + fk,k+n−3 + · · · + fk,n · · · fk,k+n−2

fk,k+n−2 fk,k+n−3 + fk,k+n−4 + · · · + fk,n−1 · · · fk,k+n−3

...
...

. . .
...

fk,k+n−(k−1) fk,n + fk,n−1 + · · · + fk,−k+n+2 · · · fk,n
fk,n fk,n−1 + fk,n−2 + · · · + fk,−k+n+1 · · · fk,n−1

 ,

where initial matrices are given by

Qk = Q1
k =


1 1 1 · · · 1 1

1 0 0 · · · 0 0

0 1 0 · · · 0 0
.
..

.

..
.
..

. . .
...

0 0 0 · · · 1 0

 and Q−1
k =



0 1 0 · · · 0 0

0 0 1 · · · 0 0
0 0 0 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 0 1
1 −1 −1 · · · −1 −1


k×k

.

Theorem 1. [16] Let 2 ≤ k ∈ N, n ∈ Z, Qn
k be the generalized Fibonacci matrix and Ik

is the identity matrix of order k then following properties hold true.

1. (Q1
k)n = Qn

k and (Q−1
k )n = Q−n

k .

2. Qn
kQ

l
k = Qn+l

k = Ql
kQ

n
k .

3. Qn
kQ
−n
k = Q0

k = Ik.

4. det(Qn
k ) = [(−1)k−1]n = (−1)(k−1)n.

By virtue of [17], we use the following lemma to prove new results.

Lemma 1. Let Q1
k be the first Fibonacci matrix of order k and A = (aij) be any square

matrix of same size, then on multiplication with Q1
k to A, the first row of Q1

kA will be the sum
of corresponding columns of A and second row to kth-row of Q1

kA becomes first to (k− 1)kth

rows of A, respectively.

Proof. It can be easily proved by usual matrix multiplication of Q1
k and A.

3.2. Generalized Lucas Matrices (GLM)

A study on construction of generalized Lucas matrices from k-step Fibonacci sequence

has been presented in [17]. Now, we investigate the generalized Lucas matrices (abbr.

as GLM) analogous to generalized Fibonacci matrices and then we give their algebraic

properties.

Definition 1. The generalized Lucas sequence {lk,n}n≥0 of order k ≥ 2 is defined as

lk,k+n = lk,k+n−1 + lk,k+n−2 + lk,k+n−3 + · · ·+ lk,n+2 + lk,n+1 + lk,n, (3.2)

where lk,r = trace(Qr
k), 0 ≤ r < k.
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The initial values for the above Lucas sequence is obtained by taking trace of the first
k generalized Fibonacci matrices. From equation (3.2) and by the definition of Qnk ,
we have

lk,n = trace(Qn
k )

= fk,k+n−1 + 1fk,k+n−3 + 2fk,k+n−4 + 3fk,k+n−5 + ... + (k − 3)fk,n+1

+(k − 2)fk,n + (k − 1)fk,n−1

= fk,k+n−1 +

k+n−3∑
i=n−1

fk,i +

k+n−4∑
i=n−1

fk,i + ... +

n−2∑
i=n−1

fk,i +

n−1∑
i=n−1

fk,i (3.3)

which yields k, 1, 3, 7, 15, 31, 63, 127, 255, 511, ..., 2k−1 − 1 as initial values of lk,n.
Since the generalized Fibonacci sequences {fk,n} and generalized Fibonacci matrices
{Qnk} are both two ended sequences, so the new sequence {lk,n} can also be extended
in negative direction. In particular, for k = 2 it gives the standard Lucas sequence
and for k = 3, the Tribonacci-Lucas sequence.

A recursive matrix L
(n)
k corresponding to the above generalized Lucas sequence is

given [17] as

L
(n)
k =
lk,k+n−1 lk,k+n−2 + · · · + lk,n lk,k+n−2 + · · · + lk,n+1 · · · lk,k+n−2

lk,k+n−2 lk,k+n−3 + · · · + lk,n−1 lk,k+n−3 + · · · + lk,n · · · lk,k+n−3

...
...

...
. . .

...

lk,k+n−(k−1) lk,n + · · · + lk,−k+n+2 lk,n + · · · + lk,−k+n+3 · · · lk,n
lk,k+n−k lk,n−1 + · · · + lk,−k+n+1 lk,n−1 + · · · + lk,−k+n+2 · · · lk,n−1

 . (3.4)

The matrix L
(n)
k refers to the generalized Lucas matrix of order k, thus the initial

Lucas matrix L
(0)
k is

L
(0)
k =



2k−1 − 1 2k−1 2k−1 − k · · · 7(2k−4) 3(2k−3) 2k−2 − 1

2k−2 − 1 2k−2 2k−2 + 1 · · · 7(2k−5) 3(2k−4) 2k−3 − 1
2k−3 − 1 2k−3 2k−3 + 1 · · · 7(2k−6) 3(2k−5) 2k−4 − 1

...
...

...
. . .

...

1 2 3 · · · k − 2 k − 1 k

k 1 − k 2 − k · · · −3 −2 −1


. (3.5)

Example 1. Initial Lucas matrices of orders two, three, four and five are

[
1 2
2 −1

]
,

3 4 1
1 2 3
3 −2 −1

 ,


7 8 4 3
3 4 5 1
1 2 3 4
4 −3 −2 −1

 and


15 16 11 10 7
7 8 9 4 3
3 4 5 6 1
1 2 3 4 5
5 −4 −3 −2 −1

 , respectively.

Theorem 2. Let n ∈ Z and L
(n)
k be the generalized Lucas matrix. Suppose L

(0)
k be the

initial Lucas matrix as defined in equation (3.5). Then we have

L
(n)
k = Qn

kL
(0)
k = L

(0)
k Qn

k . (3.6)
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Proof. We prove it using mathematical induction on n for n ≥ 1. For n = 0, the
result holds obviously. For n = 1, we have

Q1
kL

(0)
k =



1 1 1 · · · 1 1

1 0 0 · · · 0 0

0 1 0 · · · 0 0
...

...
...

. . .
...

0 0 0 · · · 0 0

0 0 0 · · · 1 0





2k−1 − 1 2k−1 2k−1 − k · · · 7(2k−4) 3(2k−3) 2k−2 − 1

2k−2 − 1 2k−2 2k−2 + 1 · · · 7(2k−5) 3(2k−4) 2k−3 − 1

2k−3 − 1 2k−3 2k−3 + 1 · · · 7(2k−6) 3(2k−5) 2k−4 − 1
...

...
...

. . .
...

1 2 3 · · · k − 2 k − 1 k
k 1 − k 2 − k · · · −3 −2 −1



Now using Lemma 1, we can write

Q1
kL

(0)
k =


2k − 1 2k − k − 1 2k − 2 − k · · · 7(2k−3) 3(2k−2) 2k−1 − 1

2k−1 − 1 2k−1 2k−1 − k · · · 7(2k−4) 3(2k−3) 2k−2 − 1

2k−2 − 1 2k−2 2k−2 + 1 · · · 7(2k−5) 3(2k−4) 2k−3 − 1
...

...
...

. . .
...

1 2 3 · · · k − 2 k − 1 k

 = L
(1)
k

Now, we assume that the result is true for n = r, i.e. QrkL
(0)
k = L

(r)
k and show that

the given statement holds valid for n = r + 1. Using Lemma 1, we have,

Qr+1
k L

(0)
k = Q1

kQ
r
kL

(0)
k = Q1

kL
(r)
k

= Q1
k


lk,k+r−1 lk,k+r−2 + lk,k+r−3 + · · · + lk,r · · · lk,k+r−2

lk,k+r−2 lk,k+r−3 + lk,k+r−4 + · · · + lk,r−1 · · · lk,k+r−3

...
...

. . .
...

lk,k+r−(k−1) lk,r + lk,r−1 + · · · + lk,−k+r+2 · · · lk,r
lk,k+r−k lk,r−1 + lk,r−2 + · · · + lk,−k+r+1 · · · lk,r−1



=


lk,k+r lk,k+r−1 + lk,k+r−2 + · · · + lk,r+1 · · · lk,k+r−1

lk,k+r−1 lk,k+r−2 + lk,k+r−3 + · · · + lk,r · · · lk,k+r−2

lk,k+r−2 lk,k+r−3 + lk,k+r−4 + · · · + lk,r−1 · · · lk,k+r−3

...
...

. . .
...

lk,k+r−(k−1) lk,r + lk,r−1 + · · · + lk,−k+r+2 · · · lk,r


= L

(r+1)
k .

For negative direction, consider n = −r, where r ≥ 0. Then by mathematical

induction on r, it can be easily proved for negative direction with a similar argument.

Combining both the cases, the result holds for all n ∈ Z. The second equality can be

proved in a similar way.

Corollary 1. For k, n ∈ N,, we have L
(−n)
k = Q−n

k L
(0)
k .

Theorem 3. Let n ∈ N, then we have (L
(1)
k )n = (L

(n)
k )(L

(0)
k )n−1.
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Proof. Using Theorem 2, we write

(L
(1)
k )n = (Q1

kL
(0)
k )n = Q1

kL
(0)
k Q1

kL
(0)
k · · ·Q1

kL
(0)
k︸ ︷︷ ︸

n-times

= (Q1
k)n(L

(0)
k )n

= (Qn
k )(L

(0)
k )n = (Qn

kL
(0)
k )(L

(0)
k )n−1 = (L

(n)
k )(L

(0)
k )n−1.

Theorem 4. The determinant of the generalized Lucas matrices are given by

det(L
(n)
k ) =

{
det(L

(0)
k ) if k is odd,

(−1)n det(L
(0)
k ) if k is even.

Proof. We have

det(L
(n)
k ) = det(Q

(n)
k L

(0)
k ) = det(Qn

k ) det(L
(0)
k ) = (−1)(k−1)n det(L

(0)
k )

=

{
det(L

(0)
k ) if k is odd,

(−1)n det(L
(0)
k ) if k is even.

Theorem 5. For m,n ∈ Z, 2 ≤ k ∈ N, we have

L
(m)
k L

(n)
k = L

(m+n)
k L

(0)
k = L

(n)
k L

(m)
k . (3.7)

Proof. From Theorem 2 and Theorem 1, we have

L
(m)
k L

(n)
k = Q

(m)
k L

(0)
k Q

(n)
k L

(0)
k = Q

(m)
k Q

(n)
k L

(0)
k L

(0)
k = Q

(m+n)
k L

(0)
k L

(0)
k

= L
(m+n)
k L

(0)
k ,

and L
(n)
k L

(m)
k = Q

(n)
k L

(0)
k Q

(m)
k L

(0)
k = Q

(n)
k Q

(m)
k L

(0)
k L

(0)
k = Q

(m+n)
k L

(0)
k L

(0)
k

= L
(m+n)
k L

(0)
k .

Thus, this completes the proof.

Corollary 2. For 2 ≤ k ∈ N, n ∈ Z, we have L
(n)
k L

(0)
k = L

(0)
k L

(n)
k .

Theorem 6. Let L
(n)
k be the generalized Lucas matrix and Qn

k be the generalized Fibonacci
matrix. Then

∀ n ∈ Z, L
(n)
k L

(−n)
k = H, where H = (L

(0)
k )2.

Proof. For n ∈ N, we have

L
(n)
k L

(−n)
k = QnkL

(0)
k Q−n

k L
(0)
k = QnkQ

−n
k L

(0)
k L

(0)
k = IkH = H.
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Theorem 7. Suppose L
(n)
k be the generalized Lucas matrix and H = (L

(0)
k )2 is invertible.

Then

(L
(n)
k )−1 = L

(−n)
k H−1.

Proof. Since L
(n)
k L

(−n)
k = H and (L

(0)
k ) is an invertible matrix, H is invertible. Now,

we get

L
(n)
k (L

(−n)
k H−1) = Ik; Ik is identity matrix.

Thus for every generalized Lucas matrix L
(n)
k , there is an unique matrix L

(−n)
k H−1

such that their product is an identity matrix. Hence

(L
(n)
k )−1 = L

(−n)
k H−1.

Lemma 2. Let p be a prime number. Then for a generalized Lucas matrix L, we have

det(L) (mod p) = det(L (mod p)). (3.8)

Theorem 8. [19] Let A = (aij) be any matrix. Then

A (mod p) = [aij (mod p)].

4. Encryption Scheme and Algorithm

Let us assume that the receiver’s public key is pk(p,E1, E2) whose components are

constructed by receiver (Bob) as discussed in Subsection (2.1.2). Now, a sender

(Alice) constructs a secret key (say λ) with this public key by choosing a restricted

integer and form an encryption matrix with their signature. Further, after receiving

the encrypted message with the signature from Alice, Bob retrieve the secret key (λ)

and after some calculation recover the plain text (see Section 2.1). In the following

algorithm, we summarizes the methodology.

4.1. Algorithm

Encryption algorithm (sender have access to pk(p,E1, E2)):

1. Sender (Alice) first chooses a secret number e, such that 1 < e < φ(p).

2. Signature: s← Ee1 (mod p).

3. Secret key: λ← Ee2 (mod p).

4. Initiate Lucas sequence {lλ,s} of order λ.

5. Key matrix: K ← L
(s)
λ (mod p), where L

(s)
λ may be obtained from Step-4 and

equation (3.4).
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6. Shift vector: B ← [lλ,λ, lλ,λ+1, ..., lλ,2λ−1] of size 1× λ (using Step-4).

7. Encryption: C = Enc(P ) : ci ← (piK +B) (mod p).

8. transmit (C, s) to Bob.

Decryption algorithm: After receiving (C, s) from sender.

1. Secret key: λ← sD (mod p), where D is Bob’s chosen secret key.

2. Initiate Lucas sequence {lλ,s}.

3. Key matrix: K∗ ← L
(−s)
λ H−1 (mod p), where both L

(−s)
λ and H = (L

(0)
λ )2

may be obtained from Step-2 using equations (3.4) and (3.5), respectively.

4. Shift vector: B ← [lλ,λ, lλ,λ+1, . . . , lλ,2λ−1] of size 1× λ (using step-2).

5. Decryption: P = Dec(C) : pi ← (ci −B)K∗ (mod p).

6. Plaintext (P) is recovered.

4.2. Example

Example 2. Let us assume that Alice (sender) wish to send a message to Bob (receiver).
Consider the prime number p = 37. Establish the public key and secret key of communication
for Bob.

Solution. Bob first chooses an integer D such that 1 < D < φ(37) = 36, say D = 10.

The set of primitive roots of 37 is given as X= {2, 5, 13, 15, 17, 18, 19, 20, 22, 24, 32, 35

}. Now, Bob selects a primitive root say α = 17 of p from X. According to public key

setup (2.1.2), Bob assigns E1 = 17, E2 = ED1 (mod p) ≡ 1710 (mod 37) ≡ 28. Thus

the public key pk(p,E1, E2) for Bob is pk(37, 17, 28) and secret key is sk(10). Now

using pk(37, 17, 28) anyone can send message to Bob (explained in next example).

Example 3 (Encryption-decryption). Using pk(37, 17, 28), construct the key ma-
trix and shift vector and encrypt the plaintext NOBLE2022.

Solution. Here, the numerical values equivalent to NOBLE2022 is [13, 14, 01, 11, 04,

28, 26, 28, 28]. Let us consider the alphabets Σ = Z37 defined as: the letters A - Z

equivalent to 00 - 25, digits 0 - 9 are equivalent to 26 - 35 and 36 for the blank/white

space. Now, according Algorithm 4.1,

• Alice first choose an integer e such that 1 < e < φ(37), say e = 23.

• Then, Alice makes signature (s) as s = Ee1 = 1723 (mod 37) ≡ 18.

• Thus secret key for Alice is λ = Ee2 = 2823 (mod 37) ≡ 3 and the key matrix is

K = L
(s)
λ (mod p).
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Hence K = L
(18)
3 (mod 37) is

K =

l3,20 l3,19 + l3,18 l3,19
l3,19 l3,18 + l3,17 l3,18
l3,18 l3,17 + l3,16 l3,17

 (mod 37)

=

196331 164778 106743

106743 89588 58035

58035 48708 31553

 (mod 37) =

 9 17 35

35 11 19

19 16 29


which is obtained by substituting the values of the corresponding terms of the gener-

alized Lucas sequence for λ = 3 (it is given in the following table).

index (n) · · · -1 0 1 2 3 4 5 6 · · · 15 16 17 18 19 20 · · ·
Lucas Seq.(l3,n) · · · -1 3 1 3 7 11 21 39 · · · 9327 17155 31553 58035 106743 196331 · · ·

Table 1. Lucas sequence of order 3

Then, shift vector is B, where B = [l3,3, l3,4, l3,5] = [07, 11, 21]. Now divide the plain-

text NOBLE2022 in blocks of size 1× λ as follows:

P1 = [ N O B] = [13 14 01], P2 = [L E 2] = [11 04 28] and P3 = [0 2 2] = [26 28 28].

Encryption takes places as: Ci ← (PiK +B) (mod 37).

C1 = (P1K +B) ≡

[13 14 01
]  9 17 35

35 11 19

19 16 29

+
[
07 11 21

] (mod 37)

≡ (04 32 31) ∼ (E 7 6)

C2 = (P2K +B) ≡

[11 04 28
]  9 17 35

35 11 19

19 16 29

+
[
07 11 21

] (mod 37)

≡ (01 24 36) ∼ (B Y �)

C3 = (P3K +B) ≡

[26 28 28
]  9 17 35

35 11 19

19 16 29

+
[
07 11 21

] (mod 37)

≡ (14 25 18) ∼ (O Z S).

Thus, Alice encrypted the plaintext NOBLE2022 to E76BY�OZS, and send it to

Bob along with her signature, i.e Alice sends {s = 18, C = C1C2C3} to Bob.

Decryption: On the other side, Bob receives (C, s) from Alice. To construct
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the decryption key K∗, Bob first recovers λ. It can be obtained using their secret

key D as follow:

λ = sD (mod 37) = 1810 (mod 37) ≡ 3.

Thus K∗ = L
(−s)
3 H−1 (mod p), where H = (L

(0)
3 )2 =

16 18 14

14 2 4

4 10 −2

 is given as

K∗ = L
(−18)
3 H−1 (mod 37)

=

l3,−16 l3,−17 + l3,−18 l3,−17

l3,−17 l3,−18 + l3,−19 l3,−18

l3,−18 l3,−19 + l3,−20 l3,−19

 1

44

−1 4 1

1 −2 3

3 −2 −5

 (mod 37)

=
1

44

−253 318 271

271 −524 47

47 −224 −571

−1 4 1

1 −2 3

3 −2 −5

 (mod 37)

=

18 36 7

7 11 29

29 15 19

 .
Clearly, KK∗ = I (mod 37) (by Theorem 7). The shift vector B is recovered by λ

as B = [l3,3, l3,4, l3,5] = [07, 11, 21]. Note that entries of both L−18
3 and H may be

obtained from Table 1. Here, the plaintext can be obtained by Pi ← (Ci − B)K∗

(mod 37) as follows:

P1 = (C1 −B)K∗ ≡
([

04 32 31
]
−
[
07 11 21

]) 18 36 7

7 11 29

29 15 19

 (mod 37)

≡ (13 14 01) ∼ (N O B)

P2 = (C2 −B)K∗ ≡
([

01 24 36
]
−
[
07 11 21

]) 18 36 7

7 11 29

29 15 19

 (mod 37)

≡ (11 04 28) ∼ (L E 2)

P3 = (C3 −B)K∗ ≡
([

14 25 18
]
−
[
07 11 21

]) 18 36 7

7 11 29

29 15 19

 (mod 37)

≡ (26 28 28) ∼ (0 2 2).

Thus, the plaintext NOBLE2022 successfully received by Bob.
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5. Strength Analysis

In the above proposed scheme, the generalized Lucas matrix and Elgamal technique

have been considered as a key element of the system and decryption matrix is set up

as L
(−s)
λ H−1 constructed with combinations of terms of generalized Lucas sequence.

The construction of key matrices is quite easy for authorized parties as λ are known

for both of them but it is very difficult for an adversary to obtain λ, as the adversary

needs to solve a discrete logarithm problem [5]. Further, matrix construction is based

on only two elements (λ, s), so it reduces time complexity as well as space complexity

of key formation and calculation of its inverse. In context of attacks based on public

data, one of the popular attacks is brute force attack [19, 21]. In case of brute

force attack, the adversary needs to calculate λ which is almost impossible (discrete

logarithm problem), and the next challenge for the adversary is to identify the correct

key matrix out of |GL(λ)| matrices, where GL(λ) represents the general linear group

[4] of order λ and is given by

|GLλ(Fp)| = (pλ − pλ−1)(pλ − pλ−2) · · · (pλ − p1)(pλ − 1) (5.1)

From equation (5.1), it is clear that security for the generalized Lucas matrices L
(s)
λ

depends on λ only, not on signature s. So s does not compromise the security even

though it is known to the adversary. For example, consider p = 37 and λ = 50,

then by equation (5.1) total number of possible key space over F37 is approximately

3.105 × 103920 which is too large. And in case of λ and/or prime p increasing, then

the key space grows exponentially.

6. Conclusion

Here, we studied the generalized Lucas matrices that is constructed with a linear com-

binations of the generalized Fibonacci sequences. We studied their algebraic proper-

ties such as direct calculation of its inverse, recursive nature, product of two matrices,

etc. We observed that the generalized Lucas matrices GLM(λ, s) do not form a mul-

tiplicative group but there exists unique inverse (matrix) for each GLM(λ, s), i.e. for

every integer s, we have matrix K∗ = L
(−s)
λ H−1 such that LsλK

∗ = K∗Lsλ = Iλ, and

it plays an important role in construction of keyspace for a cryptography.

Later, we proposed a modified public key cryptography using Affine-Hill cipher and

Elgamal signature scheme with generalized Lucas matrices as a key element. The

generalized Lucas matrices as key component in cryptosystem enlarges the keyspace,

reduces the time complexity as well as the space complexity of key formation. The

proposed method is based on construction with two parameters and has three digital

signatures (λ, s and shift vector(B)) that strengthen the security of the modified

cryptography. Since λ is known only to both the end parties (Alice and Bob), so

shift vector B constructed with λ is also known only to Alice and Bob. Thus it is

practically impossible to recover λ by anyone else as it is based on discrete logarithm
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problem. Hence, the proposed method is mathematically simple for authorized party

and tedious for an intruder, mathematically strong and have a large keyspace.
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and Lucas matrices, Discrete Appl. Math. 156 (2008), no. 14, 2606–2619.

https://doi.org/10.1016/j.dam.2007.09.028.

[21] D.R. Stinson, Cryptography: Theory and Practice, Chapman and Hall/CRC.,

New York, 2005.

[22] P. Sundarayya and G.V. Prasad, A public key cryptosystem using affine hill cipher

under modulation of prime number, J. Inf. Optim. Sci. 40 (2019), no. 4, 919–930.

https://doi.org/10.1080/02522667.2018.1470751.

[23] D. Tasci and E. Kilic, On the order-k generalized Lucas numbers, Appl. Math.

Comput. 155 (2004), no. 3, 637–641.

https://doi.org/10.1016/S0096-3003(03)00804-X.

[24] B. Thilaka and K. Rajalakshmi, An extension of Hill cipher using generalised

inverses and mth residue modulo n, Cryptologia 29 (2005), no. 4, 367–376.

https://doi.org/10.1080/0161-110591893933.

[25] H.E. Tianxiao, H.C. Jeff, and J.S. Peter, Matrix representation of recursive se-

quences of order 3 and its applications, J. Math. Res. Appl. 38 (2018), no. 3,

221–235.

https://doi.org/10.3770/j.issn:2095-2651.2018.03.001.


	Introduction
	Encryption Scheme and Mathematical Flow
	Generalized Lucas Sequences and Matrix Construction
	Encryption Scheme and Algorithm
	Strength Analysis
	Conclusion
	References

