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Abstract: Let (Kn, H−) be a complete sigraph of order n whose negative edges

induce a subgraph H. In this paper, we characterize (Kn, H−) with exactly 3 non-
negative eigenvalues, where H is a non-spanning two-cyclic subgraph of Kn.
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1. Introduction

Let G be a simple graph. As usual, V (G) and E(G) denote the set of vertices and

the set of edges of G, respectively. If V (G) = {v1, . . . , vn}, then n = |V (G)| is called

the order of G. The set of all neighbors of vi in G is denoted by N(vi). A pendant

vertex is a vertex of degree one. The girth of G, denoted by gr(G), is the order of the

shortest cycle contained in G. A graph H is a subgraph of G if V (H) ⊆ V (G) and

E(H) ⊆ E(G). A subgraph H with |V (H)| 6= |V (G)| is said to be a non-spanning

subgraph (briefly, ns-subgraph) of G. Also, a subgraph H of G is induced if E(H)

contains all edges of G that have both ends in V (H). Let Kn, Pn and Cn denote the

complete graph, the path and the cycle of order n, respectively. A two-cyclic graph

is a connected graph with exactly two cycles.

A pair Γ = (G, σ) is said to be a signed graph (called also sigraph), where σ : E(G)→
{−,+} is a function defined on E(G). The graph G is called the underlying graph of
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Γ, and σ is called the signature. We use (Kn, H
−) to denote a complete sigraph of

order n whose negative edges induce a subgraph H. If H is a disjoint union of two

graphs H1 and H2, then we denote (Kn, H
−) by (Kn, H

−
1 ∪H

−
2 ). Let A(G) = (aij) be

the adjacency matrix of G. The adjacency matrix of a sigraph Γ = (G, σ) is a matrix

A(Γ) = (aσij), where aσij = σ(vivj)aij . The nullity of a graph G, denoted by n(G), is

the nullity of A(G). By ϕ(A), we denote the characteristic polynomial of a square

matrix A. If Γ is a sigraph, then we use ϕ(Γ, λ) instead of ϕ(A(Γ)). The spectrum

of A(Γ) is referred to as the spectrum of Γ. The class of all sigraphs having exactly

r ≥ 1 non-negative eigenvalues (including their multiplicities) is denoted by L(r).

Let λ1 > · · · > λs be the distinct eigenvalues of a sigraph Γ with the corresponding

multiplicities mΓ(λ1), . . . ,mΓ(λs). The spectrum of Γ is denoted by

Spec Γ =

(
λ1 . . . λs

mΓ(λ1) . . . mΓ(λs)

)
.

For some recent results on the spectra of sigraphs see [3, 5–7, 14, 15].

Let Γ1 = (G, σ) be a sigraph and S ⊂ V (Γ1). If Γ2 is the sigraph obtained from Γ1

by reversing the signs of all edges between S and V (Γ1) \ S, then two graphs Γ1 and

Γ2 are called switching equivalent, and denoted by Γ1 ∼ Γ2. If two sigraphs Γ1 and

Γ2 are switching equivalent, then they are cospectral, see [17].

Characterizing graphs with a few non-negative eigenvalues has received a great deal

of attention in literature. In [11–13], the authors characterized all graphs with exactly

one or two non-negative eigenvalues. The authors in [9] determined all of the sigraphs

(Kn, σ) belonging to L(1) or L(2). Also, in [9, 10], they provided a characterization

of (Kn, H
−) ∈ L(3), where H is either a non-spanning tree or a unicyclic ns-subgraph

of Kn. In this paper, we characterize (Kn, H
−) ∈ L(3), where H is a two-cyclic

ns-subgraph of Kn. After our Theorem 4, the next natural step toward the complete

structural characterization of complete sigraph in L(3) is to detect all (Kn, H
−) in

that set with H being a θ-graph. We plan to attack this problem in a future paper.

2. Preliminaries

To prove the main theorem, we need the following results.

Theorem 1. (Interlacing Theorem [8, Theorem 1.3.11]) Let Γ be a sigraph with n
vertices and eigenvalues λ1 ≥ · · · ≥ λn, and let Γ′ be an induced subgraph of Γ of order m.
If λ′1 ≥ · · · ≥ λ′m are the eigenvalues of Γ′, then

λn−m+i ≤ λ′i ≤ λi (i = 1, . . . ,m).

Theorem 2. [1, Corollary 1] Let Γ = (Kn, H
−) be a complete sigraph and |V (H)| = t < n.

Then

ϕ(Γ, λ) = (λ+ 1)n−t−1ϕ

([
A(Kt, H

−) (n− t)Jt×1

J1×t n− t− 1

])
,

and so mΓ(−1) ≥ n− t− 1.
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Theorem 3. [2, Theorem 3] Let Γ = (Kn, H
−) be a complete sigraph and |V (H)| = t < n.

Then mΓ(−1) = n− t− 1 + n(H).

Remark 1. Let H be a connected graph and consider the following equivalence relation
on the vertex set V (H): two vertices vi, vj ∈ V (H) are related if and only if N(vi) = N(vj).
The corresponding quotient graph C(H) is called the canonical graph of H. Let n+(H)
and n−(H) denote the numbers of positive and negative eigenvalues of H, respectively. By
[16, Proposition 1], we know that n+(H) = n+(C(H)) and n−(H) = n−(C(H)). Thus
n(H)−n(C(H)) = |V (H)|− |V (C(H))|. If Γ = (Kn, H

−) and |V (H)| < n, then by Theorem
3, we conclude that

mΓ(−1) = n− 1 + n(C(H))− |V (C(H))|.

3. Main result

Let H be a two-cyclic ns-subgraph of Kn. In this section, we characterize (Kn, H
−) ∈

L(3). First, we have the next lemma.

Lemma 1. Let H be a two-cyclic ns-subgraph of Kn, and let Cg be a cycle of H. If
(Kn, H

−) ∈ L(3), then g ∈ {3, 4}.

Proof. If g ≥ 5, then (Kn, H
−) contains (K7, P

−
4 ∪ K

−
2 ) as an induced subgraph.

By a computer search, one can see that

Spec (K7, P
−
4 ∪K

−
2 ) =

(
4.01 2.24 1 0.09 −1.58 −2.24 −3.52

1 1 1 1 1 1 1

)
.

Note that the values in the spectrum are approximate. So (K7, P
−
4 ∪K

−
2 ) ∈ L(4) and

hence by Theorem 1, we deduce that (Kn, H
−) ∈ L(r) for some r ≥ 4, a contradiction.

Let q ≥ 1 be an integer. Let H(q) be the graph with q + 7 vertices obtained by two

quadrangles sharing a vertex u1, by attaching q pendant vertices to u1. Note that

C(H(q)) ∼= T , see Figure 1.

Figure 1. The two-cyclic graph H(q) and its canonical graph T .

Now, we prove the main result of the paper.
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Theorem 4. Let (Kn, σ) be a complete sigraph and (Kn, σ) ∼ (Kn, H
−), where H is a

two-cyclic ns-subgraph of Kn. Then (Kn, H
−) ∈ L(3) if and only if one of the next assertions

holds:

1. H ∼= Q1 for n = 7 or H ∼= Q2 for n > 7 or H ∼= Q3 for n > 8, see Fig. 2.

2. H ∼= H(1) for 9 ≤ n ≤ 12 or H ∼= H(2) for n = 10.

Figure 2. The two-cyclic graphs Q1, Q2 and Q3.

Proof. First we consider the following cases:

1. Let H ∼= Q1, depicted in Figure 2, and n = 7. By a computer search, we find

the spectrum of (K7, Q
−
1 ) as follows:

Spec (K7, Q
−
1 ) =

(
3.86 2.33 1 −0.02 −1 −2.54 −3.63

1 1 1 1 1 1 1

)
.

Hence (K7, Q
−
1 ) ∈ L(3).

Now, let H ∼= Q2, shown in Figure 2, and Γ = (Kn, Q
−
2 ), where n > 7. Since

n(Q2) = 3, by Theorem 3, we have mΓ(−1) = n − 5. The following are the

eigenvalues of (K8, Q
−
2 ):

Spec (K8, Q
−
2 ) =

(
4.46 3 1.83 −1 −2.46 −3.83

1 1 1 3 1 1

)
.

So (K8, Q
−
2 ) has three positive eigenvalues and two negative eigenvalues smaller

than −1. The sigraph Γ = (Kn, Q
−
2 ) contains (K8, Q

−
2 ) as an induced subgraph,

for each n ≥ 8. By Theorem 1, we conclude that Γ = (Kn, Q
−
2 ) ∈ L(3), for each

n > 7.

Next, suppose that H ∼= Q3 (shown in Figure 2) and Γ = (Kn, Q
−
3 ), where

n > 8. By Theorem 2, we find that

ϕ(Γ, λ) = (λ+ 1)n−9ϕ

([
A(K8, Q

−
3 ) (n− 8)J8×1

J1×8 n− 9

])
= (λ+ 1)n−7g(λ),

where g(λ) = λ7 + (7−n)λ6 + (21− 6n)λ5 + (21n− 133)λ4 + (124n− 829)λ3 +

(805−119n)λ2 + (3751−502n)λ+ 217−29n. It is easy to check that g(−1) 6= 0

and also g(0) = 217 − 29n < 0, for each n > 8. On the other hand, we have

Spec (K9, Q
−
3 ) as follows:
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(
4.46 3.69 2.56 −0.06 −1 −1.56 −2.46 −4.63

1 1 1 1 2 1 1 1

)
.

Thus (K9, Q
−
3 ) contains three positive eigenvalues and three negative eigenval-

ues smaller than −1. Since (K9, Q
−
3 ) is an induced subgraph of Γ = (Kn, Q

−
3 ),

by Theorem 1, we deduce that Γ ∈ L(3) or Γ ∈ L(4). If λ1, . . . , λ7 are the roots

of g(λ), then g(0) = −
∏7
i=1 λi. Now, g(0) < 0 yields that Γ = (Kn, Q

−
3 ) ∈ L(3),

for each n > 8.

2. Let H ∼= H(q) and Γ = (Kn, H(q)−), where m = n − (q + 7) > 0. We have

C(H(q)) ∼= T (cf. Figure 1) and n(T ) = 0. By Remark 1, we find that

mΓ(−1) = n− 1 + n(T )− |V (T )| = n− 7.

The spectrum of (K9, H(1)−) is as follows:

(
5.62 3.14 1.83 −0.22 −1 −1.95 −2.58 −3.83

1 1 1 1 2 1 1 1

)
.

Hence (K9, H(1)−) has 3 positive eigenvalues and 3 negative eigenvalues smaller

than −1. Since Γ has (K9, H(1)−) as an induced subgraph, by Theorem 1,

Γ ∈ L(3) or Γ ∈ L(4). Now, we compute ϕ(A(Γ)). Suppose that V (H(q)) is

partitioned into the parts X1 = {u1}, X2 = {u2, v2}, X3 = {u3, v3}, X4 = {u4},
and X5 = {u5}, see Fig. 1. Let X6 be the set of pendant vertices of H(q) and

X7 = V (Kn) \ V (H(q)). Note that |X6| = q and |X7| = m = n− q − 7. If B is

the quotient matrix of A(Γ) related to the equitable partition u = {X1, . . . , X7}
of V (Γ), then

B =



0 −2 −2 1 1 −q m

−1 1 2 −1 1 q m
−1 2 1 1 −1 q m

1 −2 2 0 1 q m
1 2 −2 1 0 q m

−1 2 2 1 1 q − 1 m

1 2 2 1 1 q m− 1


.

If h(λ) = ϕ(B), then h(λ) = λ7 + (7−n)λ6 + (21− 6n)λ5 + (17m+ 9q+ 4mq−
6)λ4 +(108m+76q+16mq+87)λ3 +(q−15m−40mq+44)λ2 +(−262m−166q−
112mq − 99)λ+ 196mq − 105q − 161m− 70. By [4, Lemma 2.3.1], h(λ) divides

ϕ(A(Γ)). A direct check shows that if h(−1) = 0, then mq = 0, a contradiction.

Hence, ϕ(Γ, λ) = (λ + 1)n−7h(λ). Since h(0) = (196q − 161)m − 105q − 70, so

if m < 105q+70
196q−161 , then Γ = (Kn, H(q)−) ∈ L(3). Otherwise, Γ = (Kn, H(q)−) ∈

L(4). The function f(q) := 105q+70
196q−161 is strictly decreasing for q ≥ 1. Moreover,

f(1) = 5 and f(3) < 1 < f(2) < 2. This means that only H(1) and H(2) can

possibly satisfy the conditions m < f(q) and m = n − (q + 7) > 0. Hence,

(Kn, H(1)−) ∈ L(3) for 9 ≤ n ≤ 12, and (Kn, H(2)−) ∈ L(3) for n = 10.
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Figure 3. The two-cyclic graphs G1, G2, G3 and G4.

Conversely, assume that Γ = (Kn, H
−) ∈ L(3), where H is a two-cyclic ns-subgraph

of Kn. Since two sigraphs (K5, C
−
3 ∪ K

−
2 ) and (K7, P

−
4 ∪ K

−
2 ) belong to the class

L(4), so they cannot appear as induced subgraphs of Γ. By Lemma 1, H has no

cycle of length greater than 4. First, suppose that gr(H) = 3. It is not difficult

to verify that H ∼= Q1 or one of the graphs G1, G2, G3 (shown in Figure 3) is an

induced subgraph of H, for otherwise the sigraphs (K5, C
−
3 ∪K

−
2 ) or (K7, P

−
4 ∪K

−
2 )

will appear as induced subgraphs of Γ = (Kn, H
−). A direct check shows that the

graphs (K8, Q
−
1 ), (K6, G

−
1 ), (K8, G

−
2 ), and (K8, G

−
3 ) belong to the class L(4). Thus

H ∼= Q1 and n = 7. Next, assume that gr(H) = 4. Again, to avoid (K7, P
−
4 ∪K

−
2 )

as an induced subgraph, one can deduce that H ∼= Q2 or H ∼= Q3 or H ∼= H(q)

(for some positive integer q) or the two-cyclic graph G4 (shown in Figure 3) is an

induced subgraph of H. It is easy to check that (K9, G
−
4 ) ∈ L(4). As we saw above,

if H ∼= H(q), then q = 1 and 9 ≤ n ≤ 12 or q = 2 and n = 10. Also, the sigraphs

Γ = (Kn, Q
−
2 ), for each n > 7, and Γ = (Kn, Q

−
3 ), for each n > 8, belong to the class

L(3).
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