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Abstract: Let G be a graph with vertex set V (G). A double Roman dominating
function (DRDF) on a graph G is a function f : V (G)→ {0, 1, 2, 3} having the property

that if f(v) = 0, then the vertex v must have at least two neighbors assigned 2 under f or

one neighbor w with f(w) = 3, and if f(v) = 1, then the vertex v mus have at least one
neighbor u with f(u) ≥ 2. If f is a DRDF on G, then let V0 = {v ∈ V (G) : f(v) = 0}.
A restrained double Roman dominating function is a DRDF f having the property that
the subgraph induced by V0 does not have an isolated vertex. A set {f1, f2, . . . , fd} of

distinct restrained double Roman dominating functions on G with the property that∑d
i=1 fi(v) ≤ 3 for each v ∈ V (G) is called a restrained double Roman dominating

family (of functions) on G. The maximum number of functions in a restrained double

Roman dominating family on G is the restrained double Roman domatic number of G,

denoted by drdR(G). We initiate the study of the restrained double Roman domatic
number, and we present different sharp bounds on drdR(G). In addition, we determine

this parameter for some classes of graphs.

Keywords: Restrained double Roman domination, restrained double Roman domatic

number.

AMS Subject classification: 05C69.

1. Introduction

For definitions and notations not given here we refer to [6]. We consider simple and

finite graphs G with vertex set V = V (G) and edge set E = E(G). The order of

G is n = n(G) = |V |. The neighborhood of a vertex v is the set N(v) = NG(v) =

{u ∈ V (G) | uv ∈ E}. The degree of vertex v ∈ V is d(v) = dG(v) = |N(v)|. The

maximum degree and minimum degree of G are denoted by ∆ = ∆(G) and δ = δ(G),

respectively. The complement of a graph G is denoted by G. For a subset D of

vertices in a graph G, we denote by G[D] the subgraph of G induced by D. A set

of pairwise independent edges of G is called a matching in G, while a matching of

maximum cardinality is a maximum matching in G. A leaf is a vertex of degree one,
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and its neighbor is called a support vertex. We write Pn for the path of order n, Cn

for the cycle of length n, Kn for the complete graph of order n. Also, let Kn1,n2,...,np

denote the complete p-partite graph with vertex set S1 ∪S2 ∪ . . .∪Sp where |Si| = ni
for 1 ≤ i ≤ p. For n ≥ 2, the star K1,n−1 has one vertex of degree n − 1 and n − 1

leaves.

A set S ⊆ V (G) is called a dominating set if every vertex is either an element of S

or is adjacent to an element of S. The domination number γ(G) of a graph G is the

minimum cardinality of a dominating set of G. A minimal dominating set in a graph

G is a dominating set that contains no dominating set as a proper subset.

In this paper we continue the study of Roman dominating functions and Ro-

man domatic numbers in graphs (see, for example, the survey articles [2–5]). If

f : V (G) −→ {0, 1, 2, 3} is a function, then let (V0, V1, V2, V3) be the ordered partition

of V (G) induced by f , where Vi = {v ∈ V (G) : f(v) = i} for i ∈ {0, 1, 2, 3}. There is a

1-1 correspondence between the function f and the ordered partition (V0, V1, V2, V3).

So we also write f = (V0, V1, V2, V3). A double Roman dominating function (DRDF)

on a graph G is defined in [1] as a function f : V (G) −→ {0, 1, 2, 3} having the

property that if f(v) = 0, then the vertex v must have at least two neighbors in V2
or one neighbor in V3, and if f(v) = 1, then the vertex v must have at least one

neighbor in V2 ∪ V3. The weight of a DRDF f is the value f(V (G)) =
∑

u∈V (G) f(u).

The double Roman domination number γdR(G) is the minimum weight of a DRDF

on G, and a double Roman dominating function of G with weight γdR(G) is called a

γdR(G)-function of G.

A set {f1, f2, . . . , fd} of distinct double Roman dominating functions on G with the

property that
∑d

i=1 fi(v) ≤ 3 for each v ∈ V (G) is called in [10] a double Roman

dominating family (of functions) on G. The maximum number of functions in a

double Roman dominating family on G is the double Roman domatic number of G,

denoted by ddR(G).

Mojdeh, Masoumi and Volkmann [7] defined the restrained double Roman dominating

function (RDRDF) as a double Roman dominating function f with the property that

the subgraph induced by V0 does not have an isolated vertex. The restrained double

Roman domination number γrdR(G) equals the minimum weight of an RDRDF on

G. An RDRDF on G with weight γrdR(G) is called a γrdR(G)-function.

A set {f1, f2, . . . , fd} of distinct restrained double Roman dominating functions on G

with the property that
∑d

i=1 fi(v) ≤ 3 for each v ∈ V (G) is called a restrained double

Roman dominating family (of functions) on G. The maximum number of functions in

a restrained double Roman dominating family on G is the restrained double Roman

domatic number of G, denoted by drdR(G). The definitions lead to γdR(G) ≤ γrdR(G)

and drdR(G) ≤ ddR(G).

We initiate the study of the restrained double Roman domatic number, and we present

different sharp bounds on drdR(G). In addition, we determine this parameter for some

classes of graphs. Furthermore, if G is a connected graph of order n ≥ 3, then we

show that 6 ≤ γrdR(G) + drdR(G) ≤ 3n
2 + 2.

We make use of the following results.
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Proposition 1. [10] If G is a graph, then ddR(G) ≤ δ(G) + 1.

Since drdR(G) ≤ ddR(G), the next corollary is immediate.

Corollary 1. If G is a graph of order n, then drdR(G) ≤ δ(G) + 1 ≤ n.

Proposition 2. [10] Let Cn be a cycle of order n ≥ 3. Then ddR(Cn) = 3, when
n ≡ 0 (mod 3) and ddR(Cn) = 2, when n ≡ 1, 2 (mod 3).

Proposition 3. [10] Let G be a graph of order n ≥ 2. If ∆(G) ≤ n−2, then ddR(G) ≤ n
2
.

Proposition 4. [10] If G is a graph of order n, then ddR(G) + ddR(G) ≤ n + 1, with
equality if and only if G = Kn or G = Kn.

Proposition 5. [7] If G is a connected graph of order n ≥ 2, then γrdR(G) ≤ 3n
2
.

Proposition 6. If G is a graph of order n ≥ 3, then γrdR(G) ≥ 3, with equality if and only
if ∆(G) = n− 1 and G contains a vertex w of maximum degree such that δ(G[NG(w)]) ≥ 1.

Proof. Since n ≥ 3, it is easy to see that γrdR(G) ≥ 3. Assume that G contains a

vertex w with dG(w) = n − 1 such that δ(G[NG(w)]) ≥ 1. Define the function f by

f(w) = 3 and f(x) = 0 for x ∈ V (G) \ {w}. Since G[NG(w)] does not contain an

isolated vertex, we observe that f is an RDRDF on G of weight 3 and so γrdR(G) = 3.

Conversely, assume that γrdR(G) = 3. Let f be a γrdR(G)-function. Since n ≥ 3,

there exists a vertex w with f(w) = 3 such that the remaining n − 1 vertices with

value 0 are adjacent to w and δ(G[NG(w)]) ≥ 1.

Proposition 7. [8] If G is a graph without isolated vertices and S is a minimal domi-
nating set of G, then V (G) \ S is a dominating set of G.

Proposition 8. [7] If p, q ≥ 2 are integers, then γrdR(Kp,q) = 6.

Proposition 9. [9] Let G = Kn1,n2,...,np be a complete p-partite graph with p ≥ 2 and
n1 ≤ n2 ≤ . . . ≤ np. If n = n1 + n2 + . . . + np and M is a maximum matching, then
|M | = min

{
n− np, bn2 c

}
.

2. Properties and bounds

In this section we present basic properties and bounds on the restrained double Roman

domatic number.

Theorem 1. If G is a graph without isolated vertices, then drdR(G) ≥ 2.



620 Restrained double Roman domatic number

Proof. Let T be a spanning forest of G without isolated vertices, and let X and

Y be a bipartion of T . Define the functions f and g by f(x) = 1, f(y) = 2 and

g(x) = 2, g(y) = 1 for x ∈ X and y ∈ Y . Since T has no isolated vertices, f and g are

distinct restrained double Roman dominating functions on T and also on G such that

f(u) + g(u) = 3 for each u ∈ V (G). Therefore {f, g} is a restrained double Roman

dominating family on G and thus drdR(G) ≥ 2.

We deduce from Corollary 1 and Theorem 1 the next resutl immediately.

Corollary 2. Let G be a graph without isolated vertices. If G has a leaf, then drdR(G) = 2.
In particular, if T is a nontrivial tree, then drdR(T ) = 2.

Corollary 3. Let Cn be a cycle of order n ≥ 3. Then drdR(Cn) = 3, when n ≡ 0 (mod 3)
and drdR(Cn) = 2, when n ≡ 1, 2 (mod 3).

Proof. If n ≡ 1, 2 (mod 3), then drdR(Cn) ≥ 2 by Theorem 1, and Proposition 2

implies drdR(Cn) ≤ ddR(Cn) ≤ 2. This leads to drdR(Cn) = 2 in this case.

Let now n = 3t for an integer t ≥ 1, and let Cn = v1v2 . . . vnv1. We deduce from

Corollary 1 that drdR(Cn) ≤ 3. Now define f1, f2 and f3 by f1(v3i−2) = 3 for

1 ≤ i ≤ t and f1(x) = 0 otherwise, f2(v3i−1) = 3 for 1 ≤ i ≤ t and f2(x) = 0

otherwise and f3(v3i) = 3 for 1 ≤ i ≤ t and f3(x) = 0 otherwise. Then {f1, f2, f3}
is a restrained double Roman dominating family on C3t and thus drdR(C3t) ≥ 3.

Therefore drdR(Cn) = 3, when n ≡ 0 (mod 3).

Theorem 2. If G is a graph, then γrdR(G) · drdR(G) ≤ 3n. Moreover, if we have the
equality γrdR(G) · drdR(G) = 3n, then for each restrained double Roman dominating family
{f1, f2, . . . , fd} on G with d = drdR(G), each fi is a γrdR(G)-function and

∑d
i=1 fi(v) = 3

for all v ∈ V (G).

Proof. Let {f1, f2, . . . , fd} be a restrained double Roman dominating family on G

with d = drdR(G). Then

d · γrdR(G) =

d∑
i=1

γrdR(G) ≤
d∑

i=1

∑
v∈V (G)

fi(v)

=
∑

v∈V (G)

d∑
i=1

fi(v) ≤
∑

v∈V (G)

3 = 3n.

If γrdR(G) · drdR(G) = 3n, then the two inequalities occuring in the proof become

equalities. Hence for the restrained double Roman dominating family {f1, f2, . . . , fd}
on G and for each i,

∑
v∈V (G) fi(v) = γrdR(G). Thus each fi is a γrdR(G)-function,

and
∑d

i=1 fi(v) = 3 for each v ∈ V (G).
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Theorem 3. Let G be a graph of order n ≥ 3. If G has 1 ≤ p ≤ n− 1 vertices of degree
n− 1, then drdR(G) ≥ p+ 1.

Proof. Let {v1, v2, . . . , vn} be the vertex set of G and let v1, v2, . . . , vp be the vertices

of degree n − 1. If p = 1, then Theorem 1 implies drdR(G) ≥ 2 = p + 1. Let now

p ≥ 2. Define the functions fi by fi(vi) = 3 and fi(x) = 0 for x 6= vi for 1 ≤ i ≤ p

and fp+1 by fp+1(vn) = fp+1(vn−1) = . . . = fp+1(vp+1) = 3 and fp+1(vi) = 0 for

1 ≤ i ≤ p. Since p ≥ 2, f1, f2, . . . , fp+1 are disdinct RDRD functions on G such that

f1(x) + f2(x) + . . . + fp+1(x) = 3 for each x ∈ V (G). Therefore {f1, f2, . . . , fp+1} is

a restrained double Roman dominating family on G and so drdR(G) ≥ p+ 1.

Corollary 4. Let G be a graph of order n. Then drdR(G) ≤ n with equality if and only
if G is complete.

Proof. Corollary 1 implies drdR(G) ≤ n. Let now G be complete. If n = 1, then

obviously drdR(G) = 1 = n. If n = 2, then it follows from Corollary 2 that drdR(G) =

2 = n. Let now n ≥ 3. Then Theorem 3 with p = n− 1 leads to drdR(G) ≥ n and so

drdR(G) = n.

Conversely assume that drdR(G) = n. If G is not complete, then δ(G) ≤ n − 2 and

Corollary 1 leads to the contradiction n = drdR(G) ≤ δ(G) + 1 ≤ n− 1.

Example 1. Let {v1, v2, . . . , vn} be the vertex set of the complete graph Kn (n ≥ 3), and
let k be an integer with 1 ≤ k ≤ n − 2. Define the graph G = Kn − {v1vn, v2vn . . . , vkvn}.
Then δ(G) = n − k − 1, and it follows from Corollary 1 that drdR(G) ≤ n − k. Since
vk+1, vk+2, . . . , vn−1 are vertices of degree n− 1, we deduce from Theorem 3 that drdR(G) ≥
n− k and thus drdR(G) = n− k = δ(G) + 1.

This example shows that Corollary 1 is sharp. Since drdR(G) ≤ ddR(G), Proposition

3 implies the next bound.

Corollary 5. Let G be a graph of order n ≥ 2. If ∆(G) ≤ n− 2, then drdR(G) ≤ n
2
.

Corollary 6. If G is a graph of order n, then drdR(G) + drdR(G) ≤ n+ 1, with equality
if and only if G = Kn or G = Kn.

Proof. Proposition 4 implies drdR(G)+drdR(G) ≤ n+1 and drdR(G)+drdR(G) ≤ n
when G 6= Kn and G 6= Kn. If, without loss of generality, G = Kn, then we deduce

from Corollary 4 that drdR(G) + drdR(G) = n+ 1.

Theorem 4. If G is a graph of order n ≥ 3 without isolated vertices, then

6 ≤ γrdR(G) + drdR(G) ≤ 3n

2
+ 2.
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Proof. First we prove the lower bound. Proposition 6 implies γrdR(G) ≥ 3.

Assume that γrdR(G) = 3. Then it follows from Proposition 6 that ∆(G) = n−1, and

G contains a vertex w of maximum degree such that δ(G[NG(w)]) ≥ 1. Now let S be

a minimal dominating set of G[NG(w)]. According to Proposition 7 NG(w)\S is also

a dominating set of G[NG(w)]. Now define the functions f1, f2, f3 by f1(w) = 3 and

f1(x) = 0 otherwise, f2(x) = 3 for x ∈ S and f2(x) = 0 otherwise and f3(x) = 3 for

x ∈ NG(w)\S and f3(x) = 0 otherwise. Since w is adjacent to all vertices of S and to

all vertices of NG(w) \ S, we conclude that {f1, f2, f3} is a restrained double Roman

dominating family on G and thus drdR(G) ≥ 3. This implies γrdR(G) + drdR(G) ≥ 6

in this case.

If γrdR(G) ≥ 4, then Theorem 1 leads to γrdR(G)+drdR(G) ≥ 6, and the lower bound

is proved.

Now we prove the upper bound. Theorem 2 implies

γrdR(G) + drdR(G) ≤ 3n

drdR(G)
+ drdR(G).

According to Corollary 1 and Theorem 1, we have 2 ≤ drdR(G) ≤ n. Using these

bounds and the fact that the function g(x) = x + 3n
x is decreasing for 2 ≤ x ≤

√
3n

and increasing for
√

3n ≤ x ≤ n, we obtain

γrdR(G) + drdR(G) ≤ 3n

drdR(G)
+ drdR(G) ≤ max

{
3n

2
+ 2, 3 + n

}
=

3n

2
+ 2,

and the upper bound is proved.

Example 2. Let H = pK2 with an integer p ≥ 2. Then n(H) = n = 2p, γrdR(H) = 3p =
3n
2

and drdR(H) = 2. Thus γrdR(H) + drdR(H) = 3n
2

+ 2.

This example shows that the upper bound in Theorem 4 is sharp.

Example 3. Let Wd(2, p) be the windmill graph consiting of a center vertex z which is
adjacent to the vertices of p ≥ 1 copies of the complete graph K2. Then we observe that
γrdR(Wd(2, p)) = 3, drdR(Wd(2, p)) = 3 and so γrdR(Wd(2, p)) + drdR(Wd(2, p)) = 6. Now
let W be the the graph obtained form Wd(2, p) by attaching a leaf. Then we note that
γrdR(W ) = 4, drdR(W ) = 2 and so γrdR(W ) + drdR(W ) = 6.

The graphs in Example 3 show that the lower bound in Theorem 4 is sharp.

3. Complete p-partite graphs

Theorem 5. If q ≥ p ≥ 2 are integers, then drdR(Kp,q) = p.
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Proof. Let X = {x1, x2, . . . , xp} and Y = {y1, y2, . . . , yq} be a bipartition of Kp,q.

First let |X| ≥ 3. If f is an RDRDF on Kp,q, then we show that f(X) =
∑

x∈X f(x) ≥
3. Suppose on the contrary, that f(X) ≤ 2. Then, since |X| ≥ 3, there exists a vertex

v ∈ X with f(v) = 0 and therefore a vertex w ∈ Y with f(w) = 0. However, now

the definition leads to the contradiction f(X) = f(N(w)) ≥ 3. If {f1, f2, . . . , fd} is

a restrained double Roman dominating family on Kp,q with d = drdR(Kp,q), then it

follows that

3d ≤
d∑

i=1

∑
x∈X

fi(x) =
∑
x∈X

d∑
i=1

fi(x) ≤
∑
x∈X

3 = 3|X| = 3p

and thus drdR(Kp,q) ≤ p.
Let now |X| = 2. Then drdR(Kp,q) ≤ 3 by Corollary 1. Suppose that d =

drdR(Kp,q) = 3, and let {f1, f2, f3} be a restrained double Roman dominating family

on Kp,q. If fi(x1) = 0 or fi(x2) = 0 for an index i ∈ {1, 2, 3} or fi(X) ≥ 3 for all

1 ≤ i ≤ 3, then we obtain the contradiction d ≤ p = 2 as above. Therefore assume,

without less of generality, that f1(x1) = f1(x2) = 1. This implies f1(y) ≥ 2 for y ∈ Y
and thus f2(X), f3(X) ≥ 3. Hence we arrive at the contradiction

8 = 3d− 1 ≤
3∑

i=1

∑
x∈X

fi(x) =
∑
x∈X

3∑
i=1

fi(x) ≤
∑
x∈X

3 = 6.

Altogether, we have drdR(Kp,q) ≤ p.
Conversely, define fi(xi) = fi(yi) = 3 and fi(x) = 0 otherwise for 1 ≤ i ≤ p. Then

{f1, f2, . . . , fp} is a restrained double Roman dominating family on Kp,q. Hence

drdR(Kp,q) ≥ p and thus drdR(Kp,q) = p.

If p ≥ 2 is an integer, then it follows from Proposition 8 and Theorem 5 that

γrdR(Kp,p) · drdR(Kp,p) = 6p. Thus Theorem 2 is sharp.

Theorem 6. Let G = Kn1,n2,...,np be a complete p-partite graph with p ≥ 3 and n1 ≤
n2 ≤ . . . ≤ np. If n = n1 + n2 + . . .+ np, then:

(i) If np−1 = 1, then drdR(G) = p.

(ii) If n1 ≥ 2, then

drdR(G) = min
{
n− np,

⌊n
2

⌋}
= min

{
p−1∑
i=1

ni,

⌊
1

2

p∑
i=1

ni

⌋}
.

(iii) If nt = 1 and nt+1 ≥ 2 for 1 ≤ t ≤ p− 2, then

drdR(G) = t+ min

{
p−1∑

i=t+1

ni,

⌊
1

2

p∑
i=t+1

ni

⌋}
.
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Proof. Let S1, S2, . . . , Sp be the partite sets of G with |Si| = ni for 1 ≤ i ≤ p.
(i) Let np−1 = 1, and let Si = {si} for 1 ≤ i ≤ p − 1. Define fi(si) = 3 and

fi(x) = 0 otherwise for 1 ≤ i ≤ p − 1 and fp(y) = 3 for y ∈ Sp and fp(x) = 0 for

x ∈ V (G)\Sp. Then {f1, f2, . . . , fp} is a restrained double Roman dominating family

on G and therefore drdR(G) ≥ p. Since δ(G) = p− 1, it follows from Corollary 1 that

drdR(G) ≤ p and thus drdR(G) = p in this case.

(ii) Let n1 ≥ 2. Then ∆(G) ≤ n− 2 and thus drdR(G) ≤ n
2 by Corollary 5. Let now

M = {u1v1, u2v2, . . . , umvm} be a maximum matching of G.

Define fi by fi(ui) = fi(vi) = 3 and fi(x) = 0 otherwise for 1 ≤ i ≤ m = |M |. Then

{f1, f2, . . . , fm} is a restrained double Roman dominating family on G, and therefore

we deduce from Proposition 9 that

drdR(G) ≥ |M | = min
{
n− np,

⌊n
2

⌋}
. (3.1)

If n − np ≥ np, then min
{
n− np,

⌊
n
2

⌋}
=
⌊
n
2

⌋
and hence (3.1) and the bound

drdR(G) ≤ n
2 lead to the desired result.

Next assume that np > n − np. Then min
{
n− np,

⌊
n
2

⌋}
= n − np and (3.1) implies

drdR(G) ≥ n−np. Let now {f1, f2, . . . , fd} be a restrained double Roman dominating

family on G with d = drdR(G), and let X = S1 ∪ S2 ∪ . . . ∪ Sp−1.

Assume first that there exists in index i, say i = 1, such that f1(X) = 0. Then

f1(y) ≥ 2 for y ∈ Sp. Since ni ≥ 2, we observe in this case that fi(X) ≥ 4 for

2 ≤ i ≤ d. Therefore

4(d− 1) ≤
d∑

i=1

∑
x∈X

fi(x) =
∑
x∈X

d∑
i=1

fi(x) ≤
∑
x∈X

3 = 3|X| = 3(n− np).

Since p ≥ 3 and ni ≥ 2, this leads to drdR(G) = d ≤ n− np.

Assume next that fi(X) ≥ 1 for 1 ≤ i ≤ p and, without loss of generality, that

f1(X) = 1. Then f1(y) ≥ 2 for y ∈ Sp, and as in the last case, we obtain drdR(G) ≤
n− np.

Now assume that fi(X) ≥ 2 for 1 ≤ i ≤ p. We observe that fi(X) = 2 is possible for

at most two indices. It follows that

3d− 2 ≤
d∑

i=1

∑
x∈X

fi(x) =
∑
x∈X

d∑
i=1

fi(x) ≤
∑
x∈X

3 = 3|X| = 3(n− np)

and so again drdR(G) = d ≤ n − np. As drdR(G) ≥ n − np, we conclude that

drdR(G) = n− np in this case.

(iii) Finally, let nt = 1 and nt+1 ≥ 2 for 1 ≤ t ≤ p − 2. Let Si = {si} for 1 ≤
i ≤ t. Clearly, fi(si) = 3 and fi(x) = 0 for 1 ≤ i ≤ t are restrained double Roman

dominating functions on G. Applying Theorem 5 when p− t = 2 and Part (ii) when

p − t ≥ 3 to the complete (p − t)-partite graph G[St+1 ∪ St+2 ∪ . . . ∪ Sp], we obtain

the desired result.
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If n1 ≥ 2 and min
{
n− np,

⌊
n
2

⌋}
=
⌊
n
2

⌋
in Theorem 6, then drdR(G) =

⌊
n
2

⌋
. Thus

Corollary 5 is sharp.
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