Short Note

A new construction of regular and quasi-regular self-complementary graphs

Lata Kamble^{1,*}, Charusheela Deshpande^{2,†}, Bhagyshree Athawale^{2,†} ¹Department of Mathematics, M.E.S's Abasaheb Garware College, Pune-411004, India

*lata74290gmail.com

²Department of Mathematics, College of Engineering Pune, Pune-411006, India [†]dcm.maths@coep.ac.in [‡]bhagyashriathawale@gmail.com

> Received: 19 August 2023; Accepted: 4 January 2024 Published Online: 10 January 2024

Abstract: A graph G with a vertex set V and an edge set E is called regular if the degree of every vertex is the same. A quasi-regular graph is a graph whose vertices have one of two degrees r and r-1, for some positive integer r. A graph G is said to be self-complementary if G is isomorphic to it's complement \overline{G} . In this paper we give a new method for construction of regular and quasi-regular self-complementary graph.

 ${\bf Keywords:} \ {\rm self-complementary \ graph, \ regular \ graph, \ quasi-regular \ graph.}$

AMS Subject classification: 05C07, 05C60

1. Introduction

The study of self-complementary graphs was initiated by Sachs in 1962 [5] and later but independently by Ringel [4]. Each presents a construction algorithm for selfcomplementary graphs. Sachs and Ringel also gave a construction algorithm for regular and quasi-regular self-complementary graphs. In 1972 R. Gibbs [3] gave a new algorithm for construction of self-complementary graphs. This algorithm provides a method for constructing all self-complementary graphs having a given complementing permutation σ with cycles of lengths that are powers of 2.

In this paper we present a new method for construction of regular self-complementary and quasi-regular self-complementary graphs. In section 2, we give some preliminary definitions and known results. In section 3, we introduce a new method for construction of regular self-complementary graphs and in section 4, we provide a new method for construction of quasi-regular self-complementary graphs.

^{*} Corresponding Author

^{© 2025} Azarbaijan Shahid Madani University

2. Preliminary Definitions and Results

In this section we give some preliminary definitions and results. Graphs considered here are simple. A graph G = (V, E) is called *regular* if the degree of every vertex is the same. If G is a graph in which the degree of every vertex is k, then G is said to be a k-regular graph. A graph G is said to be *bi-regular* if there exist two distinct positive integers d_1 and d_2 such that the degree of each vertex is either d_1 or d_2 . A graph G is said to be *quasi-regular* if the degree of each vertex is either r or r - 1for some positive integer r. A graph G = (V, E) is called *self-complementary* if there exists a permutation $\sigma : V \to V$, called a complementing permutation, such that for every edge e of G, $e \in E$ if and only if $\sigma(e) \notin E$. We state below the most basic results on self-complementary graphs and regular graphs, ones included even in introductory courses on graph theory.

Result 1. [2, 3, 5] If G is a self-complementary graph on n vertices, then $n \equiv 0$ or 1 (mod 4).

Result 2. [2, 3, 5] A graph G is k-regular graph on n vertices if and only if kn is even.

Result 3. [1, 2] If $d_1 \ge d_2 \ge \cdots \ge d_n$ is the degree sequence of a self-complementary graph G then $d_i + d_{n+1-i} = n - 1$.

3. Constructing regular self-complementary graph

Theorem 4 gives a well known result for regular self-complementary graphs due to Sachs [5]. His proof involves first constructing a self-complementary graph G'on 4m vertices v_1, v_2, \ldots, v_{4m} , and then by adding a new vertex v_{4m+1} in the graph G' to get the required regular self-complementary graph G on the vertices $v_1, v_2, \ldots, v_{4m}, v_{4m+1}$. Two distinct vertices v_i, v_j in G' are joined if $i + j \equiv 0$ or 1 (mod 4) for $i, j = 1, 2, 3, \ldots, 4m$. In $G', d(v_i) = 2m$ if i is odd and $d(v_i) = 2m-1$ if i is even. Now the vertex v_{4m+1} is joined to all vertices v_i , with even $i, i = 1, 2, 3, \ldots, 4m$. The graph G so obtained is a regular self-complementary graph on the vertex set $V = \{v_1, v_2, \ldots, v_{4m}, v_{4m+1}\}$ with a complementing permutation, $\sigma : V \to V$ defined as $\sigma(v_i) = v_{i+1}, i = 1, 2, \ldots, 4m - 1, \sigma(v_{4m}) = v_1, \sigma(v_{4m+1}) = v_{4m+1}$. There are several proofs for the theorem, and we introduce a new one.

Theorem 4. There exists a regular self-complementary graph of order n if and only if $n \equiv 1 \pmod{4}$.

Proof. If G is a regular graph on n vertices, then from Result 3, degree of every vertex must be $r = \frac{n-1}{2}$. For r to be an integer, n-1 must be even, and since G is self-complementary, by Result 1, we get $n \equiv 1 \pmod{4}$.

To prove the converse, we construct a regular self-complementary graph G of order n, where n is congruent to 1 modulo 4.

Let *m* be a positive integer and $V = \{u\} \cup V_0 \cup V_1 \cup V_2 \cup V_3$, where $V_i = \{v_j^i : j \in \mathbb{Z}_m\}$ for all $i \in \mathbb{Z}_4$. For pairwise distinct $i, i' \in \mathbb{Z}_4$, we define the following subsets of $V^{(2)}$, where $V^{(2)}$ denotes the set of all 2-subsets of V:

$$E_i = V_i^{(2)}, \quad E_{(i,i')} = \{\{v_{j_1}^i, v_{j_2}^{i'}\} : j_1, j_2 \in \mathbb{Z}_m\}, \quad E_i^u = \{\{u, v_j^i\} : j \in \mathbb{Z}_m\}.$$

Let $E = \bigcup_{i=0,1} (E_i \cup E_i^u) \cup E_{(0,3)} \cup E_{(2,3)} \cup E_{(1,2)}$ and let G be the graph with vertex

set V and edge set E as defined above, having n = 4m + 1 vertices.

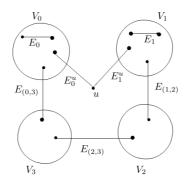


Figure 1. The types of edges of the graph G

Figure 1 explains the construction of the graph G in another way.

First we show that G is regular. Take any vertex v_j^i . Then, for fixed *i*, the vertex v_j^i lies in m-1 subsets of E_i , *m* subsets of $E_{(i,i')}$ and one subset of E_i^u .

Hence, for every vertex v_j^i in G with $i \in \{0, 1\}$, we have $\deg(v_j^i) = m - 1 + m + 1 = 2m$, and for every vertex v_j^i in G with $i \in \{2, 3\}$, we have $\deg(v_j^i) = m + m = 2m$. Furthermore, $\deg(u) = m + m = 2m$. We conclude that G is regular.

Define a bijection $\phi: V \to V$ as $\phi(u) = u, \phi(v_j^0) = v_j^3, \phi(v_j^1) = v_j^2, \phi(v_j^2) = v_j^0$, and $\phi(v_j^3) = v_j^1$, for all $j \in \mathbb{Z}_m$. It can be easily checked that G is self-complementary, with ϕ as its complementing permutation.

4. Constructing quasi-regular self-complementary graph

The known result for quasi-regular self-complementary graphs due to Sachs [5] is as follows. There are several proofs for the theorem, and we provide a new one.

Theorem 5. There exists a quasi-regular self-complementary graph of order n if and only $n \equiv 0 \pmod{4}$.

Proof. Let G be a quasi-regular self-complementary graph on n vertices. By Result 3, s + (s - 1) = 2s - 1 = n - 1. Then n = 2s, and since G is self-complementary, by

Result 1, it follows that $n \equiv 0 \pmod{4}$.

To prove the converse, we construct a graph G of order congruent to 0 modulo 4, which is quasi-regular and self-complementary.

Let *m* be a positive integer and $V = V_0 \cup V_1 \cup V_2 \cup V_3$, where $V_i = \{v_j^i : j \in \mathbb{Z}_m\}$ for all $i \in \mathbb{Z}_4$. For pairwise distinct $i, i' \in \mathbb{Z}_4$, define the following subsets of $V^{(2)}$ where $V^{(2)}$ denotes the set of all 2-subsets of V:

$$E_i = V_i^{(2)}, \quad E_{(i,i')} = \{\{v_{j_1}^i, v_{j_2}^{i'}\} : j_1, j_2 \in \mathbb{Z}_m\}$$

Let $E = \bigcup_{i=0,1} (E_i) \cup E_{(0,3)} \cup E_{(2,3)} \cup E_{(1,2)}$ and let G be the graph with vertex set V

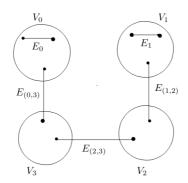


Figure 2. The types of edges of the graph G

and edge set E as defined above having n = 4m vertices.

Figure 2 explains the construction of the graph G in another way.

First we show that G is quasi-regular. Take any vertex v_j^i . Then, for fixed *i*, the vertex v_j^i lies in m-1 subsets of E_i and *m* subsets of $E_{(i,i')}$. Hence, for every vertex v_j^i in G with $i \in \{0, 1\}$, we have $\deg(v_j^i) = m - 1 + m = 2m - 1$, and for every vertex v_j^i in G with $i \in \{2, 3\}$, we have $\deg(v_j^i) = m + m = 2m$. Therefore, there are 2m vertices having degree 2m - 1 and 2m vertices of degree 2m. We conclude that G is quasi-regular.

Define a bijection $\phi: V \to V$ as $\phi(v_j^0) = v_j^3, \phi(v_j^1) = v_j^2, \phi(v_j^2) = v_j^0$, and $\phi(v_j^3) = v_j^1$, for all $j \in \mathbb{Z}_m$. It can be easily checked that G is self-complementary, with ϕ as its complementing permutation.

Conflict of Interest: The authors declare no conflict of interest.

Data Availability: Data sharing is not applicable to this article as no data sets were generated or analyzed during the current study.

References

- [1] C.R.J Clapham and D.J. Kleitman, *The degree sequences of self-complementary graphs*, J. Comb. Theory. Ser. B **20** (1976), no. 1, 67–74. https://doi.org/10.1016/0095-8956(76)90068-X.
- [2] A. Farrugia, Self-complementary graphs and generalisations: a comprehensive reference manual, Ph.D. thesis, University of Malta, 1999.
- [3] R.A. Gibbs, Self-complementary graphs, J. Comb. Theory. Ser. B 16 (1974), no. 2, 106–123. https://doi.org/10.1016/0095-8956(74)90053-7.
- [4] G. Ringel, Selbstkomplementäre graphen, Arch. Math. 14 (1963), no. 1, 354–358. https://doi.org/10.1007/BF01234967.
- [5] H. Sachs, Über selbstkomplementäre graphen, Publ. Math. Drecen 9 (1962), no. 3– 4, 270–288.