[1] A. Borchert and S. Gosselin, The metric dimension of circulant graphs and Cayley hypergraphs, Util. Math. 106 (2018), 125–147.
[4] C. Grigorious, T. Kalinowski, J. Ryan, and S. Stephen, The metric dimension of the circulant graph $C(n, \pm\{1, 2, 3, 4\})$, Australas. J. Combin. 69 (2017), no. 3, 417–441.
[8] I. Javaid, M.T. Rahim, and K. Ali, Families of regular graphs with constant metric dimension, Util. Math. 75 (2008), 21–33.
[11] T. Vetrík, On the metric dimension of directed and undirected circulant graphs, Discuss. Math. Graph Theory 40 (2020), no. 1, 67–76.
http://doi.org/10.7151/dmgt.2110
[12] T. Vetrík, M. Imran, M. Knor, and R. Škrekovski, The metric dimension of the circulant graph with $2k$ generators can be less than k, J. King Saud Univ. Sci. 35 (2023), no. 7, Article ID: 102834.
https://doi.org/10.1016/j.jksus.2023.102834