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Abstract: In the last years, Naji et al. have introduced leap Zagreb indices conceived

depending on the second degrees of vertices, where the second degree of a vertex v in a

graph G is equal to the number of its second neighbors and denoted by d2(v/G). Anal-
ogously, the leap Zagreb coindices were introduced by Ferdose and Shivashankara. The

first leap Zagreb coindex of a graph is defined as L1(G) =
∑

uv 6∈E2(G)(d2(u) + d2(v)),

where E2(G) is the 2-distance (second) edge set of G, In this paper, we present explicit

exact expressions for the first leap Zagreb coindex L1(G) of some graph operations.

Keywords: second-degrees (of vertices), leap Zagreb indices, coindices, graph opera-
tions.

AMS Subject classification: 05C07, 05C12, 05C76

1. Introduction

In this paper, we are concerned with simple graphs, i.e., finite graphs having no loops,

no multiple and directed edges. LetG = (V,E) be such a graph, the number of vertices

and edges of a graph G, denoted by n and m, respectively. The distance between any

two vertices u, v ∈ V (G) denoted by dG(u, v) and is equal to the length of the shortest

path connecting them. For a vertex v ∈ V (G), the open 2-neighborhood of v in a

graph G is defined as N2(v/G) = {u ∈ V (G) : dG(u, v) = 2}. The set of all second (2-

distance) edges of a graph G is defined by E2(G) = {vu : dG(u, v) = 2, u, v ∈ V (G)},
and we denote by µ(G) or simply µ to the cardinality of E2(G). The second degree

of a vertex v in G is denoted by d2(v/G) (or simply d2(v), if no misunderstanding)

and is the number of its second neighbors, i.e., d2(v/G) = |N2(v/G)|. For a vertex
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v ∈ V (G), the eccentricity e(v) = max{dG(v, u) : u ∈ V (G)}. The diameter of G

is diam(G) = max{e(v) : v ∈ V (G)}. Let H ⊆ V (G). Then the induced subgraph

〈H〉 of G is the graph whose vertex set is H and whose edge set consists of all of the

edges in E(G) that have both endpoints in H. A graph G is called F -free graph if

no induced subgraph of G is isomorphic to F . We follow [15], for unexplained graph

theoretic terminologies and notations.

A topological index of a graph is a graph invariant calculated from a graph represent-

ing a molecule. Among the most important such structure descriptors are the classical

first and second Zagreb indices, which were introduced by Gutman and Trinajestic

[14], in 1972, and elaborated in [12]. They are defined as:

M1(G) =
∑

v∈V (G)

d2(v) and M2(G) =
∑

uv∈E(G)

d(u)d(v).

For more details on Zagreb indices, see the surveys [7, 10] and the references cited

therein. Analogously, the Zagreb coindices were put forward in [3], and are defined

as:

M1(G) =
∑

uv/∈E(G)

(d(u) + d(v)), and M2(G) =
∑

uv/∈E(G)

d(u)d(v).

The forgotten coindex of a graph were introduces in [14], and is defined as

F (G) =
∑

uv/∈E(G)

(d2(u) + d2(v)).

For more details on the Zagreb coindices, see [3, 4, 8, 10].

In (2017), Naji et al. [11] introduced a new distance-degree-based topological indices

conceived depending on the second degrees of vertices, which are so-called leap Zagreb

indices of a graph G and are defined as:

LM1(G) =
∑

v∈V (G)

d22(v/G), LM2(G) =
∑

uv∈E(G)

d2(u/G)d2(v/G)

and LM3(G) =
∑

v∈V (G)

d(v/G)d2(v/G).

Also, Ali and Trinajstić [1] defined and studied a modified first Zagreb connection

index depended on the second degrees of vertices. They formatted it as:

Z1(G) =
∑

v/∈V (G)

d(v)d2(v).

Manzoora et al. in [18] derived formulas for calculating these modified versions of the

Zagreb indices of four well known nanostructures.

Naji et al. [20, 21], computed leap Zagreb indices for some graph operations. Shao

et al. [13], found the external bounds on leap Zagreb indices for trees and unicyclic
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graphs. For properties and details of leap Zagreb indices of a graph the readers

referred to [5, 6, 11, 13, 17, 19–23].
Recently, Ferdose and Shivashankara [9], introduced the leap Zagreb coindices of a

graph. They defined it as follows

L1(G) =
∑

uv/∈E2(G)

(
d2(u/G) + d2(v/G)

)
, L2(G) =

∑
uv/∈E(G)

(
d2(u/G)d2(v/G)

)
and L3(G) =

∑
uv/∈E(G)

(
d2(u/G) + d2(v/G)

)
.

Motivated by the Zagreb coindices and the Zagreb connection coindices for product

of molecular networks [2], in this current work, we present the exact expressions for

the first leap Zagreb coindex of some graph operations containing union, cartesian

product, composition, disjunction, symmetric difference and corona product of graphs.

The following fundamental results which will be required for many of our arguments

in this paper are found in Yamaguchi [24] and Soner and Naji [23].

Theorem 1. [23, 24] Let G be a connected graph with n vertices and m edges. Then

d2(v/G) ≤
( ∑

u∈N1(v/G)

d1(u/G)

)
− d1(v/G).

and equality holds if and only if G is a {C3, C4}-free graph.

From this theorem, the following result follows

Corollary 1. [23] Let G be a connected graph with n vertices and m edges. Then∑
v∈V (G)

d2(v/G) ≤M1(G)− 2m.

and equality holds if and only if G is a {C3, C4}-free graph.

The following result will be useful to prove our main results.

Proposition 1. For a connected graph G with n vertices, m edges and µ second edges,∑
v∈V (G)

d2(v/G) = 2|E2(G)| = 2µ.

Proof. Let G be a connected graph, and let G2 denote the square graph of G,

that is a graph with V (G2) = V (G) and for any two vertices u and v in G2 are

adjacent if and only if d(u, v) = 2 in G. It is clear that uv ∈ E2(G) if and only

if uv ∈ E(G2). Hence, |E2(G)| = |E(G2)| and so d2(v/G) = d(v/G2), for every

v ∈ V (G). Since
∑

v∈V (G2) d(v/G2) = 2|E(G2)| = 2|E2(G)| =
∑

v∈V (G) d2(v/G), we

get
∑

v∈V (G) d2(v/G) = 2|E2(G)| = 2µ.



486 The first leap Zagreb coindex of some graph operations

2. Main Results

In this section, we investigate the exact formula of the first leap Zagreb coindex for

some graph operations. We consider six operations, each of them is treated in a

separate subsection.

2.1. Union:

Definition 1. [16] Let G and H be two connected graphs with disjoint vertex sets V (G)
and V (H) and edge sets E(G), E(H), respectively. The union graph G∪H, is defined as the
graph with vertex set V (G ∪H) = V (G) ∪ V (H), and edge set E(G ∪H) = E(G) ∪ E(H).

Clearly that |V (G∪H)| = n1+n2, |E(G∪H)| = m1+m2, and |E2(G∪H)| = µ1+µ2,

where µ = µ(G) = |E2(G)|. So, the following result straightforward,

Lemma 1. [21] Let G and H be two disjoint connected graphs with n1 and n2 vertices.
Then for each v ∈ V (G ∪H),

d2(v/(G ∪H)) =

{
d2(v/G), if v ∈ V (G);
d2(v/H), if v ∈ V (H).

Theorem 2. Let G and H be connected graphs with n1, n2 vertices and µ(G), µ(H)
second edges, respectively. Then

L1(G ∪H) = L1(G) + L1(H) + 2(n2µ(G) + n1µ(H)).

Proof. From Lemma 1, for any two vertices u, v ∈ V (G∪H), uv /∈ E2(G∪H) if and

only if uv /∈ E2(G) and uv /∈ E2(H). That means either u, v ∈ V (G) and uv /∈ E2(G),

or u, v ∈ V (H) and uv /∈ E2(H), or u ∈ V (G) and v ∈ V (H). Thus, the first leap

Zagreb coindex of G ∪H is then equal to the sum of the first leap Zagreb coindices

of G and H, plus the contributions from the missing edges between vertex sets of G

and H. Where there are n1n2 of them. Then we get

L1(G ∪H) =
∑

uv/∈E2(G∪H)

(
d2(u/(G ∪H)) + d2(v/(G ∪H))

)
=

∑
uv/∈E2(G)

(
d2(u/(G ∪H)) + d2(v/(G ∪H))

)
+

∑
uv/∈E2(H)

(
d2(u/(∪H)) + d2(v/(G ∪H))

)
+

∑
u∈V (G)

∑
v∈V (H)

(
d2(u/(G ∪H)) + d2(v/(G ∪H))

)
=

∑
uv/∈E2(G)

(
d2(u/G) + d2(v/G)

)
+

∑
uv/∈E2(H)

(
d2(u/H) + d2(v/H)

)
+

∑
u∈V (G)

∑
v∈V (H)

(
d2(u/G) + d2(v/H)

)
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= L1(G) + L1(H) + n2

∑
u∈V (G)

d2(u/G) + n1

∑
v∈V (H)

d2(v/H)

= L1(G) + L1(H) + 2n2µ(G) + 2n1µ(H).

From Corrolary 1, the following result directly follows

Corollary 2. Let G and H be connected (C3, C4)-free graphs with n1, n2 vertices and
m1, m2 edges, respectively. Then

L1(G ∪H) = L1(G) + L1(H) + 2(n2M1(G) + n1M1(H))− 4(n2m1 + n1m2).

Let G1, ..., Gk be connected graphs with disjoint vertex sets V (Gi) and disjoint edge

sets E(Gi) of orders and size ni,mi, respectively. Their union is a graph G = G1 ∪
...∪Gk. Starting from Theorem 2, by induction method, the following result follows.

Proposition 2. For k ≥ 2, let G1, . . . , Gk be connected graphs with ni vertices and mi

edges, respectively. Then

L1(

k⋃
i=1

Gi) =

k∑
i=1

L1(Gi) + 2

k∑
i=1

(
µ(Gi)

k∑
j=1
j 6=i

nj

)
.

Proposition 3. For k ≥ 2, let G1, . . . , Gk be connected (C3, C4)-free graphs with ni

vertices and mi edges, respectively. Then

L1(
k⋃

i=1

Gi) =
k∑

i=1

L1(Gi) + 2
k∑

i=1

(
ni

k∑
j=1
j 6=i

(
M1(Gj)− 2mj

))
.

2.2. Join:

Definition 2. [16] For given graphs G and H with n1 and n2 order and m1 and m2 size,
respectively. The join graph G+H, is defined as the graph with vertex set V = V (G)∪V (H),
and edge set E(G+H) = E(G) ∪ E(H) ∪ {uv : ∀u ∈ V (G) and ∀v ∈ V (H)}.

Clearly that |V (G+H)| = n1 + n2 and |E(G+H)| = m1 +m2 + n1n2.

Lemma 2. [21] Let G and H be two connected graph with n1 and n2 vertices. Then

d2(v/(G+H)) =

{
n1 − 1− d(v/G), if v ∈ V (G);
n2 − 1− d(v/H), if v ∈ V (H).

Theorem 3. Let G and H be two nontrivial connected graphs with n1, n2 vertices and
m1, m2 edges, respectively. Then

L1(G+H) = M1(G) +M1(H) + n1n2(n1 + n2 − 2)− 2(n1m2 + n2m1).



488 The first leap Zagreb coindex of some graph operations

Proof. Since for any two nontrivial graphs G and H, the join graph G + H has

diameter two. Then for any vertices u, v ∈ V (G+H), uv /∈ E2(G+H), if and only if

uv ∈ E(G+H). Then by Lemma 2 and by using the fact thatM1(G) = 2m(n−1)−M1,

see [3], we obtain

L1(G+H) =
∑

uv/∈E2(G+H)

(
d2(u/(G+H)) + d2(v/(G+H))

)
=

∑
uv∈E(G+H)

(
d2(u/(G+H)) + d2(v/(G+H))

)
=

∑
uv∈E(G)

(
d2(u/(G+H)) + d2(v/(G+H))

)
+

∑
uv∈E(H)

(
d2(u/(G+H)) + d2(v/(G+H))

)
+

∑
u∈V (G)

∑
v∈V (H)

(
d2(u/(G+H)) + d2(v/(G+H))

)
=

∑
uv∈E(G)

(
2(n1 − 1)− (d(u/G) + d(v/G))

)
+

∑
uv∈E(H)

(
2(n2 − 1)− (d(u/H) + d(v/H))

)
+

∑
u∈V (G)

∑
v∈V (H)

(
(n1 − 1)− d(u/G) + (n2 − 1)− d(v/H)

)
= 2m1(n1 − 1)−M1(G) + 2m2(n2 − 1)−M1(H)

+ n1n2(n1 − 1)− 2n2m1 + n1n2(n2 − 1)− 2n1m2

= M1(G) +M1(H) + n1n2(n1 + n2 − 2)− 2(n1m2 + n2m1).

From the definition of L1(G), and by using the fact in [9], that L1(G) = L1(G), and

by note that, for u, v ∈ V (G + H), uv /∈ E2(G + H), if and only if uv ∈ E(G + H).

Since, d2(v/(G+H)) = d(v/(G+H)). Then the following result is straightforward,

Corollary 3. For any connected graphs G and H, L1(G+H) = M1(G+H).

For generalization, let G1, . . . , Gk be connected graphs with disjoint vertex sets V (Gi)

with ni vertices and edge sets E(Gi) of size mi. Their join is a graph G = G1+· · ·+Gk.

Starting from Theorem 3, by induction method, the following result straightforward.

Proposition 4. Let G1, . . . , Gk be graphs with ni vertices and mi edges, respectively.
Then

L1(
k∑

i=1

Gi) =

k∑
i=1

M1(Gi) +
k∑

i=1

(
ni(ni − 1)

k∑
j=1
j 6=i

nj

)
−

k∑
i=1

(
2ni

k∑
j=1
j 6=i

mj

)
.

The join of the graph G, of order n and size m, with itself k times is given by
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L1(

k∑
i=1

G) = k

[
M1(G) + n(k − 1)

(
n(n− 1)− 2m

)]
.

As especial case L1(
∑k

i=1Kn) = 0, as it directly computed in [9]. Also for the

complete bipartite graph Kr,r, which is a join of two copies of the total disconnected

graphs Kr with n = 2r vertices. We have L1(Kr,r) = 2r2(r − 1). In general, we

consider the case of the complete k-partite graph Kn1,...,nk
with classes of partitions

of sizes n1, . . . , nk. This graph is a join of k copies of the total disconnected graphs

Kn. We have

L1(Kn,...,n) = kn2(k − 1)(n− 1) = 4n
(k

2

)(n
2

)
.

2.3. Cartesian product:

Definition 3. [16] For given graphs G and H their cartesian product, denoted G�H, is
the graph with vertex set V (G)× V (H), and any two vertices u = (u1, u2) and v = (v1, v2)
in V (G�H) are connected by an edge if and only if either (u1 = v1 and u2v2 ∈ E(H)) or
(u2 = v2 and u1v1 ∈ E(G)).

It is a well known fact that the cartesian product of graphs is commutative and

associative up to isomorphism. |V (G�H)| = |V (G)||V (H)|, the distance between

any two vertices u = (u1, u2) and v = (v1, v2) in G�H is given by dG�H(u, v) =

dG(u1, v1) + dH(u2, v2).

Lemma 3. [21] Let G and H be connected graphs of orders n1 and n2, respectively. Then
for any vertex (u, v) ∈ V (G�H), d2((u, v)/(G�H)) = d2(u/G)+d1(u/G)d1(v/H)+d2(v/H).

The following result required to prove our main result,

Theorem 4. [20] Let G and H be two nontrivial connected graphs with n1, n2 vertices
and m1, m2 edges, respectively. Then

L1(G�H) = n2L1(G) + 4m2L3(G) +M1(G)M1(H) + 4µ(G)µ(H) + 4m1L3(H) + n1L1(H).

Theorem 5. Let G and H be two nontrivial connected graphs with n1, n2 vertices and
µ(G), µ(H) second edges, respectively. Then

L1(G�H) = 2(n1n2 − 1)
[
n2µ(G) + n1µ(H) + 2m1m2

]
−
[
n2L1(G) + n1L1(H)

]
− 4
[
m2L3(G) +m1L3(H)

]
−M1(G)M1(H)− 4µ(G)µ(H).
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Proof. From Lemma 3, Theorem 4 and by using the fact that state for any graph

G, L1(G) = (n− 1)
∑

v∈V (G) d2(v/G)− L1(G), we obtain

L1(G�H) = (n1n2 − 1)
∑

(u,v)∈V (G�H)

(
d2((u, v)/(G�H))

)
− L1(G�H)

= (n1n2 − 1)
∑

u∈V (G)

∑
v∈V (H)

(
d2((u, v)/(G�H))

)
− L1(G�H)

= (n1n2 − 1)
∑

u∈V (G)

∑
v∈V (H)

[
d2(u/G) + d1(u/G)d1(v/H) + d2(v/H))

]
− L1(G�H)

= (n1n2 − 1)
[
n2

∑
u∈V (G)

d2(u/G) + 2m1m2 + n1

∑
u∈V (G)

d2(v/H)
]

−
[
n2L1(G) + 4m2L3(G) +M1(G)M1(H) + 4µ(G)µ(H) + 4m1L3(H) + n1L1(H)

]
= (n1n2 − 1)

[
2n2µ(G) + 4m1m2 + 2n1µ(H)

]
−
[
n2L1(G) + 4m2L3(G) +M1(G)M1(H) + 4µ(G)µ(H) + 4m1L3(H) + n1L1(H)

]
= 2(n1n2 − 1)

[
n2µ(G) + n1µ(H) + 2m1m2

]
− n2L1(G)− 4m2L3(G)− n1L1(H)

− 4m1L3(H)−M1(G)M1(H)− 4µ(G)µ(H).

From Theorem 5 above and Corollary 1, the following result follows.

Corollary 4. If G and H are connected (C3, C4)-free graphs with n1, n2 vertices and
m1, m2 edges, respectively. Then

L1(G�H) = (n1n
2
2 − n2 + 4m2)M1(G) + (n2

1n2 − n1 + 4m1)M1(H)−
[
n2L1(G) + n1L1(H)

]
− 3M1(G)M1(H)− 4

[
m2L3(G) +m1L3(H)

]
+ 2(n1n2 − 1)

[
2m1m2 − n2m1 − n1m2

]
.

As an application of the above results, we list explicit formulae for the first leap Zagreb

coindex for the cartesian product of two complete graphs with p and q vertices and

the rectangular grid Pp�Pq, the C4 nanotube Pp�Cq, and the C4 nanotorus Cp�Cq,

respectively. The formulae follow from Theorem 5, by plugging in the expressions the

following values:

• M1(Kp) = p(p− 1)2, L1(Kp) = 0 and L3(Kp) = 0,

• M1(Pp) = 4n− 6, L1(Pp) = 4(n− 3) and L3(Pp) = 2(2n− 5),

• M1(Cp) = 4p, L1(Cp) = 4p and L3(Cp) = 4p.

Observation 6. For the integers number p, q ≥ 5, the following results holds:

• L1(Kp�Kq) = 4
(p
2

)(q
2

)[
3(pq − 1) + (p+ q)

]
.

• L1(Pp�Pq) = 4pq
[
2pq − 2(p+ q) + 1

]
− 68pq + 108(p+ q)− 136.

• L1(Pp�Cq) = 8q(pq − 1)(p− 1)− 4q
[
24p− 4q − 13

]
+ 8(2p− 3)(p− 1).

• L1(Cp�Cq) = 8pq(pq − 13)−+16(p2 + q2). 0
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2.4. Composition:

Definition 4. [16] The composition G[H] of graphs G and H with disjoint vertex sets
and edge sets is a graph on vertex set V (G)×V (H) in which (u1, v1) is adjacent with (u2, v2)
whenever [u1 is adjacent with u2] or [u1 = u2 and v1 is adjacent with v2].

The composition is not commutative. The easiest way to visualize the composition

G[H] is to expand each vertex of G into a copy of H, with each edge of G replaced by

the set of all possible edges between the corresponding copies of H. Hence, by letting

|E(G[H])| = n1m2 + n22m1.

Lemma 4. [21] Let G and H be two graphs with disjoint vertex sets with n1 and n2

vertices and edges sets with m1 and m2 edges, respectively. Then

d2((u, v)/G[H])) = n2d2(u/G) + d1(v/H).

The following result required to prove our main result,

Theorem 7. [20] Let G and H be two nontrivial connected graphs with n1, n2 vertices
and m1, m2 edges, respectively. Then

L1(G[H]) = n3
2L1(G) + n1M1(H) + (2n3

2 − 2n2
2 − 4n2m2)µ(G) + n1(n2 − 1)(n2

2 − n2 − 4m2).

Theorem 8. Let G and H be two nontrivial connected graphs with n1, n2 vertices and
µ(G), µ(H) second edges, respectively. Then

L1(G[H]) = 2n2µ(G)
(
n1n

2
2 − 2n2

2 + n2 + 8m2

)
+ n1n

2
2

(
n1n2 − n1 − n2 + 1

)
− n3

2L1(G)− n1M1(H)− 2n1m2

(
n1n2 − 2n2 − 1

)
.

Proof. From Lemma 4, Theorem 7 and by using the fact that state for any graph
G, L1(G) = (n− 1)

∑
v∈V (G) d2(v/G)− L1(G), we obtain

L1(G[H]) = (n1n2 − 1)
∑

(u,v)∈V (G[H])

d2((u, v)/G[H])− L1(G[H])

= (n1n2 − 1)
∑

u∈V (G)

∑
v∈V (H)

d2((u, v)/G[H])− L1(G[H])

= (n1n2 − 1)
∑

u∈V (G)

∑
v∈V (H)

[d2(u/G)− (n2 − 1)− d(v/H)]− L1(G[H])

= (n1n2 − 1)
[
2n2

2µ(G) + n1n2(n2 − 1)− 2n1m2

]
−
[
n3
2L1(G) + n1M1(H)

+ 2µ(G)(2n3
2 − 2n2

2 − 4n2m2) + n1(n2 − 1)(n2
2 − n2 − 4m2)

]
= 2µ(G)

[
n2
2(n1n2 − 1)− (2n3

2 − 2n2
2 − 4n2m2)

]
+ n1n2(n2 − 1)(n1n2 − 1)

− 2n1m2(n1n2 − 1)−
[
n3
2L1(G) + n1M1(H) + n1n2(n2 − 1)2 − 4m2n1(n2 − 1)

]
= 2µ(G)

[
n2
2(n1n2 − 1)− 2n2(n2

2 − n2 − 4m2)
]

+ n1n
2
2

(
n1n2 − n1 − n2 + 1

)
− n3

2L1(G)− n1M1(H)− 2n1m2

(
n1n2 − 2n2 − 1

)
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= 2n2µ(G)
(
n1n

2
2 − 2n2

2 + n2 + 8m2)
)

+ n1n
2
2

(
n1n2 − n1 − n2 + 1

)
− n3

2L1(G)− n1M1(H)− 2n1m2

(
n1n2 − 2n2 − 1

)
.

2.5. Disjunction:

Definition 5. [16] The disjunction G ∨ H of two graphs G and H with disjoint vertex
sets and edge sets is the graph with vertex set V (G) × V (H) in which (u1, v1) is adjacent
with (u2, v2) whenever u1 is adjacent with u2 in G or v1 is adjacent with v2 in H.

The disjunction G∨H is commutative, the number of vertices is |V (G∨H)| = n1n2,

the diameter is diam(G ∨H) ≤ 2 and the number of edges is |E(G ∨H)| = n21m2 +

n22m1 − 2m1m2. [3].

Lemma 5. [21] Let G and H be two graphs with n1 and n2 vertices and m1 and m2

edges, respectively. Then

1. d1((u, v)/(G ∨H)) = n2d1(u/G) + n1d1(v/H)− d1(u/G)d1(v/H)

2. d2((u, v)/(G ∨H)) = (n1n2 − 1)− n2d1(u/G)− n1d1(v/H) + d1(u/G)d1(v/H).

The following result requaired to show the expression of the first leap coindex of G∨H.

Theorem 9. [20] Let G and H be two graphs with n1 and n2 vertices and m1 and m2

edges, respectively, such that G or H not a complete graph. Then

L3(G ∨H) = (4n2m2 − n3
2)M1(G) + (4n1m1 − n3

1)M1(H)−M1(G)M1(H)

+ (n1n2 − 1)(2n2
1m2 + 2n2

2m1 − 4m1m2)− 2m1m2(4n1n2 − 1).

Since,for any two graphs G and H, the diameter of G ∨ H is at most two. Then

by application the fact (Theorem 4.3, in [9]), if diam(G) ≤ 2, then L1(G) = L3(G).

Hence from Theorem 11, the following expression of the first leap coindex of G ∨H
straightforward.

Theorem 10. Let G and H be two graphs with n1 and n2 vertices and m1 and m2 edges,
respectively, such that G or H not a complete graph. Then

L1(G ∨H) = (4n2m2 − n3
2)M1(G) + (4n1m1 − n3

1)M1(H)−M1(G)M1(H)

+ (n1n2 − 1)(2n2
1m2 + 2n2

2m1 − 4m1m2)− 2m1m2(4n1n2 − 1).
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2.6. Symmetric difference:

Definition 6. [16] The Symmetric difference G⊕H of two graphs G and H with disjoint
vertex sets and edge sets is the graph with vertex set V (G) × V (H) in which (u1, v1) is
adjacent with (u2, v2) whenever u1 is adjacent with u2 in G or v1 is adjacent with v2 in H
but not both.

The Symmetric difference is commutative, with |V (G⊕H)| = n1n2 vertices, diam(G⊕
H) ≤ 2 and |E(G⊕H)| = n21m2 + n22m1 − 4m1m2 edges.

Lemma 6. [21] Let G and H be two graphs with n1 and n2 vertices and m1 and m2

edges, respectively. Then

1. d1((u, v)/(G⊕H)) = n2d1(u/G) + n1d1(v/H)− 2d1(u/G)d1(v/H)

2. d2((u, v)/(G⊕H)) = (n1n2 − 1)− n2d1(u/G)− n1d1(v/H) + 2d1(u/G)d1(v/H).

We need the following result to show our next result.

Theorem 11. [20] Let G and H be two graphs with n1 and n2 vertices and m1 and m2

edges, respectively, such that G or H not a complete graph. Then

L3(G⊕H) = (n1n
2
2 − 8n2m2)M1(G) + 4M1(G)M1(H) + (n2n

2
1 − 8n1m1)M1(H)

+ 8n1n2m1m2 + n1n2(n1n2 − 1)2 − 4(n1n2 − 1)(n2
2m1 + n2

1m2 − 4m1m2).

Since the diameter of G∨H is at most two. Then by Theorem 4.3, in [9], the following

result follows,

Theorem 12. Let G and H be two graphs with n1 and n2 vertices and m1 and m2 edges,
respectively, such that G or H not a complete graph. Then

L1(G⊕H) = (n1n
2
2 − 8n2m2)M1(G) + 4M1(G)M1(H) + (n2n

2
1 − 8n1m1)M1(H)

+ 8n1n2m1m2 + n1n2(n1n2 − 1)2 − 4(n1n2 − 1)(n2
2m1 + n2

1m2 − 4m1m2).
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