Vertex-degree function index on tournaments

Document Type : Original paper

Authors

1 Department of Economy, Quantitative Methods and Economic History, Pablo de Olavide University, Carretera de Utrera Km. 1, 41013-Sevilla, Spain

2 Instituto de Matemáticas, Universidad de Antioquia, Medellín, Colombia

Abstract

Let $G$ be a simple graph with vertex set $V=V(G)$ and edge set $E=E(G)$. For a real function $f$ defined on nonnegative real numbers, the vertex-degree function index $H_{f}(G)$ is defined as $$H_{f}(G)=\sum_{u\in V(G)}f(d_{u}).$$ In this paper we introduce the vertex-degree function index $H_{f}(D)$ of a digraph $D$. After giving some examples and basic properties of $H_{f}(D)$, we find the extremal values of $H_{f}$ among all tournaments with a fixed number of vertices, when $f$ is a continuous and convex (or concave) real function on $\left[ 0,+\infty \right)$.  

Keywords

Main Subjects


[1] I. Gutman and N. Trinajstić, Graph theory and molecular orbitals. Total $\varphi$-electron energy of alternant hydrocarbons, Chem. Phys. Lett. 17 (1972), no. 4, 535–538.  https://doi.org/10.1016/0009-2614(72)85099-1
[2] G.H. Hardy, Some simple inequalities satisfied by convex functions, Messenger Math. 58 (1929), 145–152.
[3] H.G. Landau, On dominance relations and the structure of animal societies: III The condition for a score structure, Bull. Math. Biophys. 15 (1953), 143–148.  https://doi.org/10.1007/BF02476378
[4] X. Li and D. Peng, Extremal problems for graphical function-indices and $f$-weighted adjacency matrix, Discrete Math. Lett. 9 (2022), 57–66.  https://doi.org/10.47443/dml.2021.s210
[5] X. Li and J. Zheng, A unified approach to the extremal trees for different indices, MATCH Commun. Math. Comput. Chem. 54 (2005), no. 1, 195–208.
[6] N. Linial and E. Rozenman, An extremal problem on degree sequences of graphs, Graphs Combin. 18 (2002), 573–582. https://doi.org/10.1007/s003730200041
[7] J. Monsalve and J. Rada, Sharp upper and lower bounds of VDB topological indices of digraphs, Symmetry 13 (2021), no. 10, Article ID: 1903.  https://doi.org/10.3390/sym13101903
[8] J. Monsalve and J. Rada, Vertex-degree based topological indices of digraphs, Discrete Appl. Math. 295 (2021), 13–24. https://doi.org/10.1016/j.dam.2021.02.024
[9] I. Tomescu, Properties of connected $(n, m)$-graphs extremal relatively to vertexdegree function index for convex functions, MATCH Commun. Math. Comput. Chem. 85 (2021), no. 2, 285–294.
[10] I. Tomescu, Extremal vertex-degree function index for trees and unicyclic graphs with given independence number, Discrete Appl. Math. 306 (2022), 83–88.  https://doi.org/10.1016/j.dam.2021.09.028
[11] I. Tomescu, Graphs with given cyclomatic number extremal relatively to vertex degree function index for convex functions, MATCH Commun. Math. Comput. Chem. 87 (2022), no. 1, 109–114.