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Abstract: The extremal Gutman index is a concept in graph theory that studies

the maximum or minimum value of the Gutman index for a particular class of graphs.
This research area is concerned with finding the graphs that have the lowest possible

Gutman index within a set of graphs that have been transformed in some way, such

as by adding or removing edges or vertices. The study of the extremal Gutman index
can provide insights into the structure and stability of graphs, and has applications

in a range of fields, including chemical graph theory and social network analysis. By

understanding the graphs that have the lowest possible Gutman index, researchers can
better understand the fundamental principles of graph stability and the role that dif-

ferent graph transformations play in affecting the overall stability of a graph. The
research in this area is ongoing and continues to expand as new techniques and algo-

rithms are developed. The findings from this research have the potential to have a

significant impact on a wide range of fields and can lead to new and more effective
ways of analyzing and understanding complex systems and relationships in a variety of

applications. This paper focuses on the study of specific types of trees that are defined
by fixed parameters and characterized based on their Gutman index. Specifically, we
explore the structural properties of graphs that have the lowest Gutman index within

these classes of trees. To achieve this, we utilize various graph transformations that
either decrease or increase the Gutman index. By applying these transformations, we
construct trees that satisfy the desired criteria.
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1. Introduction

The Gutman index is a mathematical concept used in graph theory to measure the

overall ”stability” of a graph, also known as a measure of graph harmonicity. It was

introduced by a mathematician I. Gutman in the 1970s. The Gutman index can be

useful in various applications, such as in chemical graph theory, where it is used to

analyze the stability of chemical compounds, and in the study of social networks,

where it can be used to quantify the balance and structure of relationships between

individuals in a network. It is important to note that the Gutman index is just one of

many measures of stability in graph theory, and its suitability for a given application

depends on the specific requirements and objectives of the analysis.

One area of research in the Gutman index focuses on the computational aspects of its

calculation. Researchers have developed efficient algorithms for computing the Gut-

man index, including both exact and approximation algorithms. These algorithms

have been implemented and tested on a variety of graphs, including large-scale net-

works. Another area of research explores the relationship between the Gutman index

and other graph-theoretic concepts, such as distance-based indices, degree-based in-

dices, and Wiener index. Researchers have shown that the Gutman index is closely re-

lated to these indices, and have established mathematical connections between them.

Finally, there has been a growing interest in the study of the extremal values of

the Gutman index for specific classes of graphs. Researchers have investigated the

conditions under which graphs have maximum or minimum values of the Gutman

index, and have developed techniques for constructing graphs with optimal values

of the Gutman index. Overall, the literature on the Gutman index is extensive and

covers a wide range of topics, demonstrating the versatility and importance of this

concept in graph theory. The following is a brief literature review of some of the key

works in this area.

When Harry Wiener created the Wiener index in 1947, the history of topological

descriptors officially started. The study of many mathematical features of graphs

has made topological indices a popular subject. They are used widely in chemistry,

biology, and many other disciplines [6–9]. The oldest index with well-studied math-

ematical and chemical applications is the Wiener index. In order to clarify the rela-

tionships between the molecular structures [25] of paraffin and their boiling points,

Wiener devised the Wiener index, which is typically translated as:

W (H) =
∑

h1,h2⊆V (H)

dH(h1, h2),

where dH(h1, h2) is the distance between h1 and h2.

The Gutman index(Gut) is a natural extension of the Wiener index. The Gutman

index of a finite connected graph H is defined as

Gut(H) =
∑

h1,h2⊆V (H)

(degH h1dHh2)dH(h1, h2),
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For increasing trees, the Gutman index was investigated by Kazemi and Meimeon-

dari [16]. Gutman [12] introduces the concept of degree-based topological indices,

which include the Gutman index as a special case. It defines the Gutman index and

establishes its basic properties. In [24], Réti et al. investigates the bond-additive and

atoms-pair-additive indices of graphs. In [1], authors investigate the reverse-degree-

based topological indices of fullerene cage networks. In [17] the authors studied the

topological invariants of nanocones and fullerenes.

In [1], authors investigate the reverse-degree-based topological indices of fullerene

cage networks. In [17] the authors studied the topological invariants of nanocones

and fullerenes. Raza and Ali [23], presented bounds on the Zagreb indices for molec-

ular (n,m) graphs along with the identification of the graphs attaining them. Arock-

iaraj et al. [5] utilized the vertex cut method to compute some indices for silicate

networks. Li and Zhang [20] investigated the mathematical properties of the multi-

plicative weighted Harary index using various transformations. Hua [15] employed

transformations to study the extreme characteristics of the Wiener index and the

molecular topological index. Li and Meng [18] and He et al. [14] examined the

behavior of the some indices of graphs obtained by edge operations. For further

mathematical studies, refer to [2, 3, 10, 11, 19, 21, 22, 26, 27].

An independent edge set of a subset of E(H) is defined as a set where no two edges

share the same H vertex. The maximum independent edge set is the largest set

among all independent edge sets. The matching number, denoted by v(H), is the

total number of matches possible for H. A dominating set for H is a subset of

V (H) such that every vertex not in the subset is connected to at least one of its

members. The vertices in the dominating set are called dominating vertices. The

minimum number of dominating sets for H is referred to as the domination number,

which is abbreviated as ω(H). This paper focuses on the study of specific types of

trees that are defined by fixed parameters and characterized based on their Gutman

index. Specifically, we explore the structural properties of graphs that have the lowest

Gutman index within these classes of trees. To achieve this, we utilize various graph

transformations that either decrease or increase the Gutman index. By applying these

transformations, we construct trees that satisfy the desired criteria.

2. Graph transformations and their effects on the Gutman
index

Graph transformations are a powerful tool in graph theory for modifying the structure

of a graph in order to better understand its properties [18]. When applied to the

Gutman index, these transformations can have a significant impact on its value. The

study of graph transformations and their effects on the Gutman index is an active area

of research, with the goal of finding the conditions under which these transformations

result in graphs with optimal values of the Gutman index. This line of research has

important applications in various fields, including chemistry, where the stability of

chemical compounds can be analyzed using the Gutman index, and network analysis,
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where the stability of social networks can be evaluated. By investigating the effects

of graph transformations on the Gutman index, researchers can gain insight into the

structural properties of graphs that are critical for stability and harmonicity.

2.1. α-transformation

The α-transformation is defined as follows: Consider two nontrivial trees Γ1 and Γ2.

Let x ∈ V (Γ1) and y ∈ V (Γ2), and connect Γ1 to Γ2 with a path Pk = a1, a2, a3, . . . , ak
by identifying x with a1 and y with ak. The resulting graph is denoted by G. The

graphs obtained from G by moving Γ2 from ak to a1 are denoted by G′. The operation

of obtaining G′ from the original graph G is called the α-transformation.

Figure 1. α-transformation

Theorem 1. Let G′ be a connected graph with n ≥ 2 vertices obtained from G by
α-transformation (see Figure 1). Then Gut(G) > Gut(G′) .

Proof. Let us denote B = V (Γ1) ∪ V (Γ1) ∪ Pk \ {a1, ak}. Then

Gut(G)−Gut(G′) =
∑

p∈{a1,ak}
v∈B

(dG(p).dG(v))dG(p, v)−
∑

p∈{a1,ak}
v∈B

(dG′ (p).dG′ (v))dG′ (p, v)

+
∑

p∈V (Γ1)\{a1}
q∈V (Γ2)\{ak}

(dG(p).dG(q))dG(p, q)−
∑

p∈V (Γ1)\{a1}
q∈V (Γ2)\{ak}

(dG′ (p).dG′ (q))dG′ (p, q)

+
∑

p∈V (Γ1)∪V (Γ2)\{a1,ak}
q∈V (Pk)\{a1,ak}

(dG(p).dG(q))dG(p, q)

−
∑

p∈V (Γ1)∪V (Γ2)\{a1,ak}
q∈V (Pk)\{a1,ak}

(dG′ (p).dG′ (q))dG′ (p, q)

+
∑

p,q∈V (Γ1)\{a1}
(dG(p).dG(q))dG(p, q)−

∑
p,q∈V (Γ1)\{a1}

(dG′ (p).dG′ (q))dG′ (p, q)

+ (dG(a1).dG(ak))dG(a1, ak)− (dG′ (a1).dG′ (ak))dG′ (a1, ak).

It is easy to see from Figure 1 that for p ∈ V (Γ1) \ {a1}(respectively V (Γ2) \
{ak}, V (Pk) \ {a1, ak}, we have dG(p) = dG′(p). If p ∈ V (Γ1) \ {a1}, then

dG′(p, ai) = dG′(p, ai) for all i = 1, 2, . . . , k − 1 and if p ∈ V (Γ2) \ {ak}, then

dG′(p, ai) = dG′(p, ak−i+1) for all i = 1, 2, . . . , k − 1. So, we have
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∑
p,q∈V (Γ1)\{a1}

[(dG(p).dG(q))dG(p, q)− (dG′ (p).dG′ (q))dG′ (p, q)] = 0.

Also, we have

∑
p∈V (Γ1)∪V (Γ2)\{a1,ak}

q∈V (Pk)\{a1,ak}

[(dG(p).dG(q))dG(p, q)− (dG′ (p).dG′ (q))dG′ (p, q)] = 0

Thus, we have only the following expressions:

∑
1

=
∑

p∈{a1,ak}
q∈B

(dG(p).dG(q))dG(p, q)−
∑

p∈{a1,ak}
q∈B

(dG′ (p).dG′ (q))dG′ (p, q)

∑
2

=
∑

p∈V (Γ1)\{a1}
q∈V (Γ2)\{ak}

(dG(p).dG(q))dG(p, q)−
∑

p∈V (Γ1)\{a1}
q∈V (Γ2)\{ak}

(dG′ (p).dG′ (q))dG′ (p, q)

∑
3

= (dG(a1).dG(ak))dG(a1, ak)− (dG′ (a1).dG′ (ak))dG′ (a1, ak).

Thus, we have
Gut(G)−Gut(G′) =

∑
1

+
∑

2

+
∑

3

.

So, we need to show that
∑

1 +
∑

2 +
∑

3 > 0. To show this let dΓ1(a1) = m1

and dΓ2
(ak) = m2. It is easy to see that dG(a1, ai) = dG′(ak, ak−i+1), for all i =

1, 2, . . . , k − 1. Thus

∑
1

=

1∑
1

+

2∑
1

+

3∑
1

+

4∑
1

+

5∑
1

,

where

1∑
1

=

k−1∑
i=2

2(m1 + 1)dG(a1, ai) +

k−1∑
i=2

2(m2 + 1)dG(ak, ai)−
k−1∑
i=2

2(m1 +m2 + 1)dG′ (a1, ai)

−
k−1∑
i=2

(2)dG′ (ak, ai).

Since dG(a1, ai) = dG′(ak, ak−i+1), so
∑1

1 = 0. Now

2∑
1

=
∑

p∈V (Γ1)\{a1}
(dG(p).dG(a1))dG(p, a1)−

∑
p∈V (Γ1)\{a1}

(dG′ (p).dG′ (a1))dG′ (p, a1)

=
∑

p∈V (Γ1)\{a1}
[(m1 + 1)dG(p)− (m1 +m2 + 1)dG(p)]dG(p, a1)

=
∑

p∈V (Γ1)\{a1}
(−m2)dG(p)dG(p, a1).
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Similarly, we have

3∑
1

=
∑

p∈V (Γ1)\{a1}
(dG(p).dG(ak))dG(p, ak)−

∑
p∈V (Γ1)\{a1}

(dG′ (p).dG′ (ak))dG′ (p, ak)

=
∑

p∈V (Γ1)\{a1}
[(m2 + 1)dG(p)− (1)dG(p)]dG(p, ak).

As dG(p, ak) = dG(p, a1) + k − 1, so

3∑
1

=
∑

p∈V (Γ1)\{a1}
(m2)dG(p)[dG(p, a1) + k − 1].

Hence

2∑
1

+
3∑
1

= m2(k − 1)
∑

p∈V (Γ1)\{a1}
dG(p).

By similar argument, we have

4∑
1

=
∑

w∈V (Γ2)\{ak}
(dG(w).dG(a1))dG(w, a1)−

∑
w∈V (Γ2)\{ak}

(dG′ (w).dG′ (a1))dG′ (w, a1)

5∑
1

=
∑

w∈V (Γ2)\{ak}
(dG(w).dG(ak))dG(w, ak)−

∑
w∈V (Γ2)\{ak}

(dG′ (w).dG′ (ak))dG′ (w, ak).

But dG′(w, a1) = dG(w, ak) and dG′(w, ak) = dG(w, ak)+k−1, for all w ∈ V (Γ2)\{ak},
so, we have

4∑
1

+
5∑
1

= m1(k − 1)
∑

w∈V (Γ2)\{ak}
dG(w).

Denote
∑

w∈V (Γ2)\{ak}
dG(w) = β > 0 and

∑
p∈V (Γ1)\{a1}

dG(p) = α > 0, then

∑
1

=

1∑
1

+
2∑
1

+
3∑
1

+

4∑
1

+

5∑
1

= (k − 1)[m2α+m1β] > 0,

since k > 1.
Now ∑

2

=
∑

p∈V (Γ1)\{a1}
q∈V (Γ2)\{ak}

(dG(p).dG(q))dG(p, q)−
∑

p∈V (Γ1)\{a1}
q∈V (Γ2)\{ak}

(dG′ (p).dG′ (q))dG′ (p, q),

dG′(p, q) = dG(p, q)− k + 1 for all p ∈ V (Γ1) \ {a1} and q ∈ V (Γ2) \ {ak}. Thus∑
2

= (k − 1)
∑

p∈V (Γ1)\{a1}
q∈V (Γ2)\{ak}

(dG(p).dG(q)) = (k − 1)αβ > 0,

since k > 1. It is easy to see that
∑

3 = m1m2(k − 1) > 0, which complete the

proof.
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2.2. β-transformation

To define β-transformation, consider a nontrivial tree Γ such that V (Γ) = n and

E(Γ) = n− 1. Let us take ab ∈ E(Γ) such that , dΓ(a) = q + 1(q ≥ 2), dΓ(b) = t and

subtrees Γ1,Γ2, . . . ,Γq with root vertices c1, c2, c3, . . . , cq connected to the vertex b of

the tree Γ. Furthermore, vΓq ∼= Pl and a subgraph G1 having b must contains a path

Pk = b1, b2, . . . , bk with k ≥ l and b1 is attached to the vertex b with |V (G1)| = l+ 2.

Now the graph Γ′ obtained form Γ as Γ′ = Γ− {aci | 1 ≤ i ≤ q − 1}+ {bci | 1 ≤ i ≤
q − 1}. To obtained Γ′ from the original tree Γ is called β transformation as shown

in the Figure 2.2.

Figure 2. β-transformation

Theorem 2. Let Γ′ be a connected tree with n ≥ 2 vertices obtained from Γ by β-
transformation (see Figure 2.2). Then

Gut(Γ) > Gut(Γ′) .

Proof. Let us denoted the graph G =
⋃q−1
i=1 Γi and Γq ∼= Pl = a1, a2, . . . , al with

a1 = cm. From Figure 2.2, it is easy to note that for x, y ∈ V (G1) \ {b}(respectively
V (G1) and V (Pl) for all dΓ(x) = dΓ′(x) and dΓ(x, y) = dΓ′(x, y). Then, we have

Gut(G)−Gut(G′) =
∑

1

+
∑

2

+
∑

3

,

where

∑
1

=
∑

x∈{a,b}
y∈V (Γ)\{a,b}

[
(dΓ(x).dΓ(y))dΓ(x, y)− (dΓ′ (x).dΓ′ (y))dΓ′ (x, y)

]
∑

2

= (dΓ(a).dΓ(b))dΓ(a, b)− (dΓ′ (a).dΓ′ (b))dΓ′ (a, b)∑
3

=
∑

x∈V (G1)∪V (Pl)\{b}
y∈V (G)

[
(dΓ(x).dΓ(y))dΓ(x, y)− (dΓ′ (x).dΓ′ (y))dΓ′ (x, y)

]
.
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Now, we prove that
∑

1 +
∑

2 +
∑

3 is positive. Since the length of the path Pk is

greater or equal than the length of the path Pl, so k ≥ l and deg(bi) ≥ 2 for all

i = 1, 2, . . . , k − 1.
Since Γ = G1 \ {Pk} ∪G ∪ Pk ∪ Pl, hence

∑
1 can be further written as four sums as

below: ∑
1

=

1∑
1

+

2∑
1

+

3∑
1

+

4∑
1

,

where

1∑
1

=
∑
y∈Pk

[
(dΓ(a).dΓ(y))dΓ(a, y)− (dΓ′ (a).dΓ′ (y))dΓ′ (a, y)

]
+
∑
y∈Pk

[
(dΓ(b).dΓ(y))dΓ(b, y)− (dΓ′ (b).dΓ′ (y))dΓ′ (b, y)

]

= (q − 1)

k∑
i=1

dΓ(bi)
[
dΓ(a, bi)− dΓ(a, bi)

]
.

With dΓ(a, bi) = dΓ(b, bi) + 1, we have

1∑
1

= (q − 1)

k∑
i=1

dΓ(bi).

Let
k∑
i=1

dΓ(bi) = α and
l∑
i=1

dΓ(ai) = η, it follows that
∑1

1 = (q− 1)α > 0, since q ≥ 2.

Now,

2∑
1

=
∑
y∈Pl

[
(dΓ(a).dΓ(y))dΓ(a, y)− (dΓ′ (a).dΓ′ (y))dΓ′ (a, y)

]
+
∑
y∈Pl

[
(dΓ(b).dΓ(y))dΓ(b, y)− (dΓ′ (b).dΓ′ (y))dΓ′ (b, y)

]

=

l∑
i=1

{
dΓ(b, ai)

[
(1− q)dΓ(ai)

]
+ dΓ(a, ai)

[
(q − 1)dΓ(ai)

]}
.

With dΓ(a, ai) = dΓ(b, ai)− 1, we have
∑2

1 = (1− q)
l∑
i=1

dΓ(ai) = (1− q)η < 0, since

q ≥ 2. Again

3∑
1

=
∑

y∈V (G)

[
(dΓ(a).dΓ(y))dΓ(a, y)− (dΓ′ (a).dΓ′ (y))dΓ′ (a, y)

]
+

∑
y∈V (G)

[
(dΓ(b).dΓ(y))dΓ(b, y)− (dΓ′ (b).dΓ′ (y))dΓ′ (b, y)

]
=

∑
y∈V (G)

[
t.dΓ(y)dΓ(b, y)− dΓ(y)[t+ q − 1][dΓ(b, y)− 1]

]
+

∑
y∈V (G)

[
(q + 1)dΓ(y))dΓ(a, y)− 2dΓ(y)[dΓ(a, y) + 1]

]
.
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As dΓ(a, y) = dΓ(b, y)− 1, and let
∑

y∈V (G)

dΓ(y) = π, we have

3∑
1

= t
∑

y∈V (G)

dΓ(y) = tπ.

Lastly,

4∑
1

=
∑

x∈V (G1)

[
(dΓ(a).dΓ(x))dΓ(a, x)− (dΓ′ (a).dΓ′ (x))dΓ′ (a, x)

]
+

∑
x∈V (G1)

[
(dΓ(b).dΓ(x))dΓ(b, x)− (dΓ′ (b).dΓ′ (x))dΓ′ (b, x)

]
.

With dΓ′(b, x) = dΓ(b, x) + 1, and let
∑

x∈V (G1)

dΓ(x) = ϕ, we have

4∑
1

= (q − 1)
∑

x∈V (G1)

dΓ(x) = (q − 1)ϕ.

Thus, ∑
1

=
1∑
1

+
2∑
1

+
3∑
1

+
4∑
1

= (q − 1)[α− η + ϕ] + tπ > 0, as α > η.

Now,
∑

2 = (q + 1)t(1)− 2(t+ q − 1)(1) = (q − 1)(t− 2) > 0, because t ≥ 2.
Also,

∑
3

=
∑

x∈V (G1)∪V (Pl)\{b}
y∈V (G)

[
(dΓ(x).dΓ(y))dΓ(x, y)− (dΓ′ (x).dΓ′ (y))dΓ′ (x, y)

]

=
∑

y∈V (G)

dΓ(y)
[ k∑
i=1

dΓ(bi)−
l∑

i=1

dΓ(ai) +
∑

x∈V (G1)

dΓ(x)
]

= π[α− η + ϕ] > 0.

Thus, we obtain Gut(Γ) > Gut(Γ′) .

2.3. θ-transformation

To define θ-transformation, consider a nontrivial tree(bipartite graph) Γ. Let us take

ab ∈ E(Γ) a cut edge such that , dΓ(b) = t(t ≥ 2). Furthermore, let us consider a

start Sk+2 with central vertex r. The graph G can be obtained by merging a vertex

a in V (Γ) with a pendant vertex of Sk+2. To perform this operation, we delete all

edges rz and add new edges bz where z is a neighbor of r in Sk+2, except for a. The

resulting graph is referred to as G′, and this operation is known as a θ-transformation

(refer to Figure 2.3).
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Figure 3. θ-transformation

Theorem 3. Let G′ be a connected graph obtained from G by θ-transformation (see
Figure 2.3). Then

Gut(G) > Gut(G′) .

Proof. To proof the inequality, one can see that its enough to compute

Gut(G)−Gut(G′) =
∑

1

+
∑

2

+
∑

3

,

where ∑
1

=
∑

x∈{r,b}
y∈V (G)\{r,b}

[
(dG(x).dG(y))dG(x, y)− (dG′ (x).dG′ (y))dG′ (x, y)

]
∑

2

= (dG(r).dG(b))dG(r, b)− (dG′ (r).dG′ (b))dG′ (r, b) and

∑
3

=
∑

z∈V (Γ)\{b}
y∈N(r)\{a}

[
(dG(z).dG(y))dG(z, y)− (dG′ (z).dG′ (y))dG′ (z, y)

]
,

with
∑

1 =
∑1

1 +
∑2

1, where

1∑
1

=
∑

y∈V (G)\{r,b}
(dG(y).dG(r))dG(y, r)−

∑
y∈V ((G)\{r,b}

(dG′ (y).dG′ (r))dG′ (y, r)

2∑
1

=
∑

y∈V (G)\{r,b}
(dG(y).dG(b))dG(y, b)−

∑
y∈V ((G)\{r,b}

(dG′ (y).dG′ (b))dG′ (y, b).

Now, we solve above entities independently.

1∑
1

=
∑

z∈V (Γ)\{b}
(dG(y).dG(r))dG(y, r)−

∑
y∈V ((G)\{r,b}

(dG′ (y).dG′ (r))dG′ (y, r)

=
∑

z∈V (Γ)\{b}
[(dG(z).dG(r))dG(z, r)− (dG′ (y).dG′ (r))dG′ (y, r)]

+
∑

z∈V (Sk+1)\{r}
[(dG(z).dG(r))dG(z, r)− (dG′ (z).dG′ (r))dG′ (z, r)].
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Since dG(r) = k + 1 and dG′(z, r) = dG(z, r), so

1∑
1

=
∑

z∈V (Γ)\{b}
kdG(z)dG(z, r) + k(k − 2).

Now

2∑
1

=
∑

z∈V (Γ)\{b}
[(dG(z).dG(b))dG(z, b)− (dG′ (z).dG′ (b))dG′ (z, b)]

+
∑

z∈V (Sk+1)\{r}
[(dG(z).dG(b))dG(z, b)− (dG′ (z).dG′ (b))dG′ (z, b)].

Since dG′(b) = dG(b) + k = t+ k and dG′(z, b) = dG(z, b), so

2∑
1

= 2kt− k2 −
∑

z∈V (Γ)\{b}
kdG(z)dG(z, b).

Thus
∑

1 =
∑1

1 +
∑2

1 = 2k(t− 1) +
∑

z∈V (Γ)\{b}
2kdG(z).

Furthermore, ∑
2

= (dG(r).dG(b))dG(r, b)− (dG′ (r).dG′ (b))dG′ (r, b)

= 2(k + 1)t− 2(t+ k) = 2k(t− 1).

Now ∑
3

=
∑

z∈V (Γ)\{b}
y∈N(r)\{a}

[
(dG(z).dG(y))dG(z, y)− (dG′ (z).dG′ (y))dG′ (z, y)

]

=
∑

z∈V (Γ)\{b}
kdG(z)

[
dG(z, a)− dG(z, b) + 1

]
=

∑
z∈V (Γ)\{b}

2kdG(z).

Hence Gut(G)−Gut(G′) =
∑

1 +
∑

2 +
∑

3 = 4k(t−1)+
∑

z∈V (Γ)\{b}
4kdG(z) > 0, since t > 1.

2.4. γ-transformation

The γ-transformation is defined as follows: Consider a nontrivial tree Γ. Then G =

Gk,l is acquired by merging a0 ∈ V (Γ) with the vertex a0 and b0 of paths a0a1a2 . . . ak,

b0b1b2 . . . bl respectively. The new graph is obtained graph as: G′ = Gk+1,l−1 =

Gk,l + akbl − bl−1bl. (Figure 2.4)

Figure 4. γ-transformation
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Theorem 4. Let G′ be a connected graph obtained from G by γ-transformation (see
Figure 2.4). Then

Gut(G) < Gut(G′) .

Proof. Let A0 = {ak, bl−1, bl} and B0 = V (Gk,l) \A0.
To proof the inequality, one can see that its enough to compute Gut(G)−Gut(G′) =∑

1 +
∑

2, where

∑
1

=
∑

x∈B0

[
(dG(x).dG(ak))dG(x, ak)− (dG′ (x).dG′ (ak))dG′ (x, ak)

]
+
∑

x∈B0

[
(dG(x).dG(bl−1))dG(x, bl−1)− (dG′ (x).dG′ (bl−1))dG′ (x, bl−1)

]
+
∑

x∈B0

[
(dG(x).dG(bl))dG(x, bl)− (dG′ (x).dG′ (bl))dG′ (x, bl)

]
.

Since dG′(x, ak) = dG(x, ak), dG′(x, bl−1) = dG(x, bl−1) and dG′(x, bl) = dG(x, ak)+1,
dG(x, bl) = dG(x, bl−1) + 1, hence we have,

∑
1

=
∑

x∈B0

2dG(x)
[
(dG(x, bl−1)− dG(x, ak)

]
.

Since k ≥ l, so
∑
x∈B0

(dG(x, bl−1) <
∑
x∈B0

dG(x, ak), implies that
∑

1 < 0. Now, we

consider

∑
2

=
∑

x,y∈A0

[
(dG(x).dG(y))dG(x, y)− (dG′ (x).dG′ (y))dG′ (x, y)

]
=
[
(dG(bl−1).dG(ak))dG(bl−1, ak)− (dG′ (bl−1).dG′ (ak))dG′ (bl−1, ak)

]
+
[
(dG(bl).dG(bl−1))dG(bl, bl−1)− (dG′ (bl).dG′ (bl−1))dG′ (bl, bl−1)

]
+
[
(dG(ak).dG(bl))dG(ak, bl)− (dG′ (ak).dG′ (bl))dG′ (ak, bl)

]
.

Since dG(bl, ak) = dG′(bl−1, bl) = k+ l, and dG′(bl−1, ak) = dG(bl−1, ak), thus we have

∑
2

= k + l − 2− k − l + 2 = 0,

which implies that Gut(G)−Gut(G′) =
∑

1 +
∑

2 < 0, and that complete the proof.

3. Results and Discussions

Let us consider the class of trees Γan of order n with a leaves. If a = 1 or a = n− 1,

we have unique tree. Thus we will take only 3 ≤ a ≤ n− 2. Let us denote the class of

trees Γdn of order n with a given diameter d. In this section, we will give the extremal

results for these two classes of trees. A tree Γ is called a spider if it has at most one
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vertex u with du is greater than 2 which is known as the hub of the spider and its leges

are made by paths from its leaves to the hub. Now, we will denote S(l1, l2, . . . , la)

the n-vertex spider along P1, P2, . . . , Pa legs such that every leg Pi is of length li

for all i = 1, 2, . . . , a and
a∑
i=1

li = n − 1 A spider S(l1, l2, . . . , la) is known to be a

balanced spider if |li− lj | ≤ 1 for all 1 ≤ i, j ≤ a. It is know that any balanced spider

of order n is isomorphic to S
(
bn− 1

a
c, . . . , bn− 1

a
c︸ ︷︷ ︸

n−t

, dn− 1

a
e, . . . , dn− 1

a
e︸ ︷︷ ︸

t

)
such that

n − 1 ≡ t(mod a) Now, we will give our results related with the class Γan of order n

with a given number of leaves a.

Theorem 5. The minimum value of Gutman index in the class Γa
n is attained by the

unique balanced spider tree S
(
bn− 1

a
c, . . . , bn− 1

a
c︸ ︷︷ ︸

n−t

, dn− 1

a
e, . . . , dn− 1

a
e︸ ︷︷ ︸

t

)
such that n−1 ≡

t(mod a)

Proof. Let Γ be the tree in the class Γan such that Gut(Γ) is the smallest. It is

sufficient to prove that Γ is a balanced spider. On contrary, supposed that Γ is

not a spider. Then by Theorem 2, we can get a tree Γ′ by using β transformation

on Γ such that Gut(Γ′) < Gut(Γ). It is contradiction to our supposition that Γ

attains the smallest value of Gutman index. In order to complete the proof, we

need to show that Γ ∼= S
(
bn− 1

a
c, . . . , bn− 1

a
c︸ ︷︷ ︸

n−t

, dn− 1

a
e, . . . , dn− 1

a
e︸ ︷︷ ︸

t

)
is a balanced

spider for n − 1 ≡ t(mod a). Again suppose that Γ = S(l1, l2, . . . , la). Now if Γ is

not a balanced, then it must have at least two Pi, Pj legs of lengths li, lj such that

|li − lj | ≥ 2. Let us consider Pi = a1a2, · · · , ai and Pj = b1b2, · · · , bj for j < i, be the

two such legs of Γ. then we will obtain Γ′′ 6= Γ by deleting bj−1bj from Pj and adding

bjai in Pi. Now by applying Theorem 4, we will get Gut(Γ′′) < Gut(Γ), which is the

contradiction, hence the proof finished.

Let Pd+1 = x0x1 · · ·xd be the d− length path. Then Γ(y1, y2, . . . , yd−1) be the tree

obtained from Pd+1 by connecting yi pendant vertices to each of xi, for all 1 ≤ i ≤ d−1

and n = d+ 1 +
d−1∑
i=1

yi. Let us consider such tree Γ(0, 0, . . . , 0, yb d2 c
, 0, . . . , 0). Let us

denote the class of all tree of order n with diameter d by Γdn. We will characterize

in the following result the tree which obtained the smallest value of Gutman index in

Γdn.

Theorem 6. The smallest value of Gutman index in the class Γd
n is attained by the tree

Γ(0, 0, . . . , 0, yb d
2
c, 0, . . . , 0).



270 Optimizing the Gutman Index

Proof. Let Γ be the tree in the class Γdn such that Gut(Γ) is the smallest and

Γ 6= Γ(0, 0, . . . , 0, yb d
2
c, 0, . . . , 0).

Either multiple vertices have degree greater than 2, or there is only one vertex x2

with dΓ(x2) > 2 s. t. it has a path of length greater than two length one attached to

it. Let P = x0x1 · · ·xd be the longest path attached to x2. Then by α-transformation

on such vertices, we can get Γ′ s. t. Γ′ 6= Γ. Now by Theorem 1, we get the inequality

Gut(Γ′) < Gut(Γ), which is the contradiction to the minimality of Gut(Γ), similarly,

other case can be proved, which complete the proof.

In graph theory, a matching in a graph G is a set of edges that do not have a set of

common vertices. In other words, a matching is a graph where each node has either

zero or one edge incident to it. The maximum cardinality of such set of edges is called

matching number of G and denoted by ν(G). A dominating set for a graph G is a

subset D of the vertices such that every vertex not in D is adjacent to at least one

member of D. The domination number ω(G) is the number of vertices in a smallest

dominating set for G. We have the following relation between matching number and

domination number of a graph G.

Theorem 7 ( [13]). If G is any connected graph, then ω(G) ≤ ν(G)

Lemma 1 ([4]). Let T be an n-vertex tree. Then Gut(Sn) ≤ Gut(T ) ≤ Gut(Pn).

Let us consider the class of trees Γωn of order n with domination number ω. Now we

will give characterization of minimal trees with domination number ω in this class

which achieve the minimum values for the Gutman index.

Theorem 8. If Γ has the smallest value of Gutman index in the class Γω
n, then ω(Γ) =

ν(Γ)

Proof. Let Γ has domination number ω and matching number ν. then by theorem

8, we have ω(Γ) ≤ ν(Γ). Thus it is enough to prove that ω(Γ) ≥ ν(Γ). On contrary,

supposed that ω(Γ) < ν(Γ) and a set of cardinality ω which is dominating set as

well denoted by A = {a1, a2, . . . , aω} is a dominating set of cardinality ω. Thus, we

have a1a
′
1, a2a

′
2, . . . , aωa

′
ω independent edges. Let us consider the set M ′ = {aia′i :

i = 1, 2, . . . , ω}, then M ′ must be subset of any maximal matching M , because

ω(Γ) < ν(Γ). Thus there is at least one edge b1b2, which is not connected with each of

the edges aia
′
i for all i = i = 1, 2, . . . , ω. By the similar argument given in [20], we can

always find a matching M, such that Γ will have ω+1 edges a1a
′
1, a2a

′
2, . . . , aωa

′
ω, b1b2.

Now, if there is unique vertex of A whihc dominate the b1, b2, then we have a triangle

3 in Γ which is not possible as Γ is a tree.
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Figure 5. The structure of Γ and Γ′ trees

Thus, two different vertices of A must dominate both vertices b1 and b2. Let us

supposed that bj is dominated by a vertex aj , where j = 1, 2 as shown in Fig. (5).

If we apply α-transformation on a1b1 and a2b2 of the tree Γ, we will get Γ′ as shown

in Figure 5. Then by applying Theorem 1, we get Gut(Γ′) < Gut(Γ), which is the

contradiction to the minimality of Gut(Γ), which complete the proof.
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MATCH Commun. Math. Comput. Chem. 67 (2012), no. 2, 515–524.



272 Optimizing the Gutman Index

[5] M. Arockiaraj, S.R.J. Kavitha, and K. Balasubramanian, Vertex cut method for

degree and distance-based topological indices and its applications to silicate net-

works, J. Math. Chem. 54 (2016), no. 8, 1728–1747.

https://doi.org/10.1007/s10910-016-0646-3.

[6] A.T. Balaban, Topological and stereochemical molecular descriptors for databases

useful in QSAR, similarity/dissimilarity and drug design, SAR and QSAR in

Environmental Research 8 (1998), no. 1-2, 1–21.

https://doi.org/10.1080/10629369808033259.

[7] K. Balasubramanian, Integration of graph theory and quantum chemistry for

structure-activity relationships, SAR and QSAR in Environmental Research 2

(1994), no. 1-2, 59–77.

https://doi.org/10.1080/10629369408028840.

[8] , Mathematical and computational techniques for drug discovery: promises

and developments, Current Topics in Medicinal Chemistry 18 (2018), no. 32,

2774–2799.

https://doi.org/10.2174/1568026619666190208164005.

[9] K. Balasubramanian and S.P. Gupta, Quantum molecular dynamics, topologi-

cal, group theoretical and graph theoretical studies of protein-protein interactions,

Current Topics in Medicinal Chemistry 19 (2019), no. 6, 426–443.

https://doi.org/10.2174/1568026619666190304152704.

[10] K.C. Das, G. Su, and L. Xiong, Relation between degree distance and Gutman

index of graphs, MATCH Commun. Math. Comput. Chem. 76 (2016), no. 1,

221–232.

[11] L. Feng, W. Liu, A. Ilić, and G. Yu, Degree distance of unicyclic graphs with

given matching number, Graphs Combin. 29 (2013), no. 3, 449–462.

https://doi.org/10.1007/s00373-012-1143-5.

[12] I. Gutman, Degree-based topological indices, Croat. Chem. Acta 86 (2013), no. 4,

351–361.

http://dx.doi.org/10.5562/cca2294.

[13] T.W. Haynes, S. Hedetniemi, and P. Slater, Fundamentals of Domination in

Graphs, CRC press, Boca Raton, 1998.

[14] C. He, S. Li, and J. Tu, Edge-grafting transformations on the average eccentricity

of graphs and their applications, Discret. Appl. Math. 238 (2018), no. 13, 95–105.

https://doi.org/10.1016/j.dam.2017.11.032.

[15] H. Hua, Wiener and Schultz molecular topological indices of graphs with specified

cut edges, MATCH Commun. Math. Comput. Chem. 61 (2009), no. 3, 643–651.

[16] R. Kazemi and L. Meimondari, Degree distance and Gutman index of increasing

trees, Trans. Comb. 5 (2016), no. 2, 23–31.

https://doi.org/10.22108/toc.2016.9915.

[17] F. Koorepazan-Moftakhar, A.R. Ashrafi, O. Ori, and M.V. Putz, Topological

invariants of nanocones and fullerenes, Current Organic Chem. 19 (2015), no. 3,

240–248.

http://dx.doi.org/10.2174/1385272819666141216230152.

[18] S. Li and X. Meng, Four edge-grafting theorems on the reciprocal degree distance



Z. Raza, B.A. Rather 273

of graphs and their applications, J. Comb. Optim. 30 (2015), no. 3, 468–488.

https://doi.org/10.1007/s10878-013-9649-1.

[19] S. Li, Y. Song, and H. Zhang, On the degree distance of unicyclic graphs with

given matching number, Graphs Combin. 31 (2015), no. 6, 2261–2274.

https://doi.org/10.1007/s00373-015-1527-4.

[20] S. Li and H. Zhang, Some extremal properties of the multiplicatively weighted

Harary index of a graph, J. Comb. Optim. 31 (2016), no. 3, 961–978.

https://doi.org/10.1007/s10878-014-9802-5.

[21] S. Mukwembi and S. Munyira, Degree distance and minimum degree, Bull. Aust.

Math. Soc. 87 (2013), no. 2, 255–271.

https://doi.org/10.1017/S0004972712000354.

[22] B.A. Rather, M. Aouchiche, M. Imran, and S. Pirzada, On arithmetic–geometric

eigenvalues of graphs, Main Group Metal Chemistry 45 (2022), no. 1, 111–123.

https://doi.org/10.1515/mgmc-2022-0013.

[23] Z. Raza and A. Ali, Bounds on the Zagreb indices for molecular (n,m)-graphs,

Int. J. Quantum Chem. 120 (2020), no. 18, Article ID: e26333.

https://doi.org/10.1002/qua.26333.
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