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Abstract: This paper proposes a novel hybrid conjugate gradient method for non-

parametric statistical inference.The proposed method is a convex combination of the

modified linear search (MLS) and Fletcher-Reeves (FR) methods, and it inherits the
advantages of both methods. The FR method is known for its fast convergence, while

the MLS method is known for its robustness to noise. The proposed method combines

these advantages to achieve both fast convergence and robustness to noise. Our method
is evaluated on a variety of nonparametric statistical problems, including kernel den-

sity estimation, regression, and classification. The results show that the new method

outperforms the MLS and FR methods in terms of both accuracy and efficiency.
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1. Introduction

The conjugate gradient method has played a special role in solving large-scale nonlin-

ear optimization due to the simplicity of their iteration, very low memory requirements

and good convergence analysis. For more references on advances in conjugate gradient
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method see, Andrei [5, 6]. The nonlinear conjugate gradient method is designed to

solve the following unconstrained optimization problem:

min {f(x) : x ∈ Rn} , (1.1)

where f : Rn → R is a continuously differentiable function, bounded from below. The

conjugate gradient method aims to solve the problem (1.1) starting from an initial

point x0 ∈ Rn, it generates a sequence {xk}k≥0, such as:

xk+1 = xk + αkdk, (1.2)

where xk is the current iteration point, the stepsize αk is a positive scalar determined

by some line search, and dk is the search direction defined by the following formula:

d0 = −g0; dk+1 = −gk+1 + βkdk, (1.3)

where gk+1 = ∇f(xk+1) is the gradient of f at xk+1 and the parameter βk is known

as the conjugate gradient coefficient.

The step length αk is very important for global convergence of conjugate gradient

methods. Usually, two major inexact line searches are the standard Wolfe line search,

which

f(xk + αkdk)− f(xk) ≤ δαkgTk dk, (1.4)

gTk+1dk ≥ σg
T
k dk, (1.5)

where 0 < δ < σ < 1. Also, the strong Wolfe conditions consist of (1.4) and∣∣∣gTk+1dk

∣∣∣ ≤ −σgTk dk. (1.6)

Now, we denote yk = gk+1 − gk and ‖.‖ the Euclidean norm. We will give some

famous formulas of the parameter βk as Polak-Ribière-Polyak (PRP) method [22, 23],

Hestenes-Stiefel (HS) method [16] and Liu -Storey (LS) method [20]:

βPRPk =
gTk+1yk

‖gk‖2
, βHSk =

gTk+1yk

yTk dk
, βLSk =

gTk+1yk

−gTk dk
,

in general, they may not be convergent, but usually they have better numerical results.

Moreover, although Fletcher-Reeves (FR) method [15], Dai-Yuan (DY) method [9]

and Conjugate Decent (CD) proposed by Fletcher [14]:

βFRk =
‖gk+1‖2

‖gk‖2
, βDYk =

‖gk+1‖2

yTk dk
, βCDk =

‖gk+1‖2

−gTk dk
.
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These methods have strong convergent properties, but they may not perform well in

practice due to jamming [2] and [3].

The first global convergence result for FR method was given by Zoutendijk [30] in

1970. He proved that FR method converges globally when the line search is exact.

Al-Baali [1], is the first who proved the FR method converges globally when the line

search is inexact. Under the strongWolfe conditions with σ < 1
2 , he proved that

FR method generates sufficient descent directions. On the other hand, for the exact

line search, the LS method is identical to the PRP method. Liu and Storey [20]

studied this method, proving its global convergence. The techniques developed for

the analysis of the PRP method may be applied to the LS method.

Throughout the years, many of the variety of the original conjugate gradient methods

have been widely studied. For instance, Wei et al. [28] gave a variant of the PRP

method, which we call WY L method, where the parameter βk is obtained by:

βWYL
k =

‖gk+1‖2 −
‖gk+1‖
‖gk‖

gTk+1gk

‖gk‖2
.

The Wei–Yao–Liu conjugate gradient method inherits the properties of PRP. Under

the strong Wolfe line search with σ ≤ 1
4 , Huang et al. [17] showed that the search

direction of the WY L method satisfies the sufficient descent condition and the algo-

rithm is globally convergent. Yao et al. [26] extended this idea to the LS method

which we call the MLS method. The parameter βk in the MLS method is given by:

βMLS
k =

‖gk+1‖2 −
‖gk+1‖
‖gk‖

gTk+1gk

−dTk gk
.

If σ ∈
(
0, 12

)
in the strong Wolfe line search, Yao et al. [26] proved that the MLS

method also can produce sufficient descent direction and the method is globally con-

vergent.

The hybrid conjugate gradient method is considered to combine the standard conju-

gate gradient methods in a two distinct ways. The first class is based on projection

concept. Recently, Touati-Ahmed and Storey [27] introduced the first hybrid conju-

gate gradient algorithm, where the parameter βk is computed as:

βTaSk = min
{
βFRk , βPRPk

}
.

The authors proved that βTaSk has good convergence properties and numerically out-

performs both the βFRk and βPRPk algorithms. Also, Zhou et al. [29] combined LS

method with CD method, proposing the following formula:

βH3
k = max

{
0, min

{
βLSk , βCDk

}}
.

Its global convergence under the strong Wolfe line search was proved by Zhou et al.

[29].
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The second class of hybrid conjugate gradient methods is based on the convex

combination of the standard methods. Recently, Liu and Li [19] introduced a hy-

brid conjugate gradient method based on LS and DY methods (denoted as HLSDY

method) for solving unconstrained optimization problem (1.1), calculating the pa-

rameter βHLSDYk as a convex combination of βLSk and βDYk , i.e:

βHLSDYk = (1− θk)βLSk + θkβ
DY
k ,

where θk is a scalar parameter satisfying 0 ≤ θk ≤ 1. Convergence with the strong

Wolfe condition was established and numerical results show that this hybrid computa-

tional scheme outperforms some sophisticated conjugate gradient methods for many

problems. Also, Djordjević in [10] proposed the hybridization of LS and CD by their

convex combination, which call the HLSCD method, such as:

βHLSCDk = (1− θk)βLSk + θkβ
CD
k .

The compilation of parameter θk in βHLSCDk is in such a way that the conjugacy

condition is satisfied. The global convergence of this method is proved under the

strong Wolfe line search without convexity assumption on the objective function. In

2019, this author also studied the global convergence of the HLSFR method [11] under

the strong Wolfe line search, such that:

βHLSFRk = (1− θk)βLSk + θkβ
FR
k .

Numerical results show that this method is efficient for the standard unconstrained

problems in CUTE library [4].

The aim of this paper is to propose new hybrid conjugate gradient as a convex com-

bination of MLS and FR conjugate gradient algorithms. Under a strong Wolfe line

search, we establish the convergence properties of the proposed CG method. We prove

that the modified method possesses sufficient descent property independent on any

line search. Numerical results show that the new hybrid method is efficient and robust

and outperform as five algorithms famous. Finally, an application of our method in

nonparametric mode estimator is also considered. Now, we will organize our work as

follows. In the next section, we compose a new hybrid method and determine the pa-

rameter θk. Also we present the specific algorithm and we prove the sufficient descent

condition. In section 3, we prove the global convergence of the proposed method with

strong Wolfe line search. The numerical results are interpreted in section 4. An ap-

plication of the new method in nonparametric statistics is given in section 5. Finally,

we end up this paper with a brief summary.
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2. Convex combination method

In this section, we combine FR and MLS methods to get HMLSFR method in which

the parameter βk in the presented method, denoted as βHMLSFR
k , is computed as a

convex combination of βMLS
k and βFRk , i.e:

βHMLSFR
k = (1− θk)βMLS

k + θkβ
FR
k , (2.1)

where θk is a scalar parameter satisfying 0 ≤ θk ≤ 1, which follows to be determined.

The search direction dk of our algorithm is computed by:

d0 = −g0, dk+1 = −gk+1 + βHMLSFR
k dk. (2.2)

In the conjugate gradient method, the traditional conjugacy condition dTk+1yk = 0,

plays an important role in the convergence analyses and numerical calculation. To

select the parameter θk, we consider the following lemma.

Lemma 1. If the conjugacy condition dTk+1yk = 0 is satisfied at every iteration, we get

θk =


0 if ζ+ϑ

ρ+ϑ
≤ 0,

1 if ζ+ϑ
ρ+ϑ
≥ 1

ζ+ϑ
ρ+ϑ

else

, (2.3)

where ϑ =
(
‖gk+1‖2 ‖gk‖2 − ‖gk+1‖ ‖gk‖ gTk+1gk

)
dTk yk, ρ = dTk ykd

T
k gk ‖gk+1‖2 a,d ζ =

‖gk‖2 gTk+1ykd
T
k gk.

Proof. We multiply both sides of the relation (2.2) by the vector yTk and compute

βk by (2.1) , we obtain

θk =
gTk+1yk − β

MLS
k dTk yk(

βFRk − βMLS
k

)
dTk yk

.

From the formulas of βFRk and βMLS
k , we get

θk =
‖gk‖2 gTk+1ykd

T
k gk +

(
‖gk+1‖2 ‖gk‖2 − ‖gk+1‖ ‖gk‖ gTk+1gk

)
dTk yk

dTk ykd
T
k gk ‖gk+1‖2 +

(
‖gk+1‖2 ‖gk‖2 − ‖gk+1‖ ‖gk‖ gTk+1gk

)
dTk yk

.

Hence, Lemma 1 is proved.
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2.1. Algorithm and the sufficient descent condition

The framework of the proposed HMLSFR algorithm is given as follows:

Step 1. Initialization.

Choose an initial point x0 ∈ Rn and the parameters 0 < δ < σ < 1
2 . Compute f(x0)

and g0. Set d0 = −g0.

Step 2. Test for continuation of iterations.

If ‖gk‖∞ ≤ 10−6, then stop. Otherwise, go to the next step.

Step 3. Line search.

Compute αk by the strong Wolfe line searches (1.4) , (1.6) and update the variables

xk+1 = xk + αkdk.

Step 4. Compute θk.

If ρ+ ϑ = 0, then set θk = 0, else set θk in (2.3)

Step 5. Compute βk.

If 0 < θk < 1, then compute βk by (2.1) . If θk ≥ 1, then compute βk by βFRk . If

θk ≤ 0, then compute βk by βMLS
k .

Step 6. Compute the search direction.

Generate dk+1 = −gk+1 + βHMLSFR
k dk.

Step 7. Set k = k + 1 and go to Step 2.

Now, we prove that the search direction dk obtained by the new hybrid conjugate

gradient method satisfies in some condition the sufficient descent condition.

Theorem 1. Let the sequences {dk} and {gk} be generated by the HMLSFR algorithm.
Then the search direction dk satisfies the sufficient descent direction

gTk dk ≤ −c ‖gk‖
2 , ∀ k > 0. (2.4)

Proof. The following proof is by induction. For k = 0, it holds d0 = −g0 then

gT0 d0 = −‖g0‖2 , we conclude that the sufficient descent condition holds for k =

0. Now, we assume (2.4) holds for k and prove that for k + 1.

From (2.1) and (2.2), we have

dk+1 = −gk+1 + ((1− θk)βMLS
k + θkβ

FR
k )dk.

Thus, we can obtain

dk+1 = θkd
FR
k+1 + (1− θk) dMLS

k+1 . (2.5)

Multiplying (2.5) by gTk+1 from the left, we get

gTk+1dk+1 = θkg
T
k+1d

FR
k+1 + (1− θk) gTk+1d

MLS
k+1 . (2.6)

Firstly, let θk = 0. Then dk+1 = dMLS
k+1 . So,
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gTk+1d
MLS
k+1 = −‖gk+1‖2 +

‖gk+1‖2 −
‖gk+1‖
‖gk‖

gTk+1gk

−dTk gk
gTk+1dk.

We have since the definition of βMLS
k that

0 ≤ βMLS
k 6 2βCDk . (2.7)

Using Cauchy Schwarz inequality and the second strong Wolfe line search condition

(1.6), we have

gTk+1d
MLS
k+1 ≤ −c1 ‖gk+1‖2 . (2.8)

where c1 = 1− 2σ.

Secondly, let θk = 1. We get

dk+1 = dFRk+1.

The FR method satisfies the sufficient descent condition, see Theorem 1 in Al-Baali

[1], so

gTk+1d
FR
k+1 ≤ −c2 ‖gk+1‖2 , ∀k ≥ 0, (2.9)

where c2 = 1−2σ
1−σ , et 0 < σ < 1

2 .

Finally, suppose that 0 < θk < 1, i.e. there exists two positive constants a1 and

a2, such as

0 < a1 6 θk 6 a2 < 1.

From the relation (2.6), we conclude

gTk+1dk+1 6 a1g
T
k+1d

FR
k+1 + (1− a2) gTk+1d

MLS
k+1 .

Using (2.8) and (2.9), we have

gTk+1dk+1 6 −c ‖gk+1‖2 , (2.10)

where c = a1c1 + (1− a2) c2. Thus, we complete the proof.
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3. Global convergence of the proposed method

In order to establish the global convergence of our method, we need the following

basic assumptions on the objective function.

Assumption A: The level set

S = {x ∈ Rn : f(x) ≤ f(x0)},

is bounded.

Assumption B: In some open convex neighborhood N of S, the function f is con-

tinuously differentiable and its gradient is Lipschitz continuous, namely, there exists

a constant L > 0, such that:

‖∇f(x)−∇f(y)‖ ≤ L ‖x− y‖ , ∀x, y ∈ N . (3.1)

From assumption B we can deduce that for all x ∈ N there exists a positive constant

Γ ≥ 0, such that

‖ Of(x) ‖≤ Γ, ∀x ∈ N . (3.2)

It follows from Dai et al. [8] it is proved that for any conjugate gradient method with

strong Wolfe line search, it holds.

Lemma 2. Let Assumptions A and B hold. Consider the method (1.2) and (1.3), where
dk is a descent direction, and αk is obtained by the strong Wolfe line search. If

∑
k≥0

1

‖dk‖2
=∞, (3.3)

then

lim
k→∞

inf ‖gk‖ = 0.

Now, we need also this Lemma to prove the convergence of our method.

Lemma 3. Let Assumptions A and B hold and the sequence {xk} is obtained by the
HMLSFR method, αk satisfies the strong Wolfe conditions (1.4) and (1.6). Then

αk ≥
(1− σ) | gTk dk |

L ‖ dk ‖2
.

Proof. From (1.6), we have (gTk+1dk − g
T
k dk) ≥ (σ− 1)gTk dk. Using the Cauchy Schwarz

inequality and (3.1), it holds that (σ − 1)gTk dk ≤ (gk+1 − gk)T dk ≤ Lαk ‖ dk ‖2 . By

combining these two inequalities, the result can be achieved.
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This indicates that αk obtained by the HMLSFR method is not equal to zero, hence

there exists a constant λ > 0, such as

αk ≥ λ, for all k ≥ 0. (3.4)

The following Theorem is established to the global convergence of the HMLSFR

method with the strong Wolfe line search.

Theorem 2. Consider the iterative method in the form (1.2) and(1.3), with the conjugate
gradient parameter βHMLSFR

k defined by (2.1), suppose that Assumptions A and B hold.
Then either gk = 0, for some k, or

lim
k→∞

inf ‖gk‖ = 0. (3.5)

Proof. Suppose by contradiction that (3.5) does not hold, then there exists a positive

constant γ, such that

‖gk‖ ≥ γ, for all k. (3.6)

Since 0 ≤ θk ≤ 1, from (2.1) we have

βHMLSFR
k ≤ βMLS

k + βFRk . (3.7)

The sufficient descent condition holds for the CD method too see [12], then

βCDk ≤
Γ2

c1γ2
. (3.8)

On the other side,

βFRk ≤
Γ2

γ2
. (3.9)

From (2.7), (3.8) and (3.9), we have

∣∣∣βHMLSFR
k

∣∣∣ ≤ Γ2

γ2

(
2

c1
+ 1

)
= E. (3.10)

Thus, it follows from (2.2) ,(3.4) and (3.10) that

‖dk+1‖ ≤‖ gk+1 ‖ +
∣∣∣βHMLSFR
k

∣∣∣ ‖ xk+1 − xk ‖
αk

≤M, (3.11)

where M = Γ + ED
λ and D is a diameter of the level set N .

By taking the summation k ≥ 0,
∑
k≥0

1
‖dk‖2

=∞.

So, applying Lemma 2, we conclude that (3.5) is true. This is a contradiction with

(3.6), so we have proved (3.5).
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4. Numerical Experiments

In this section, we present some numerical experiments obtained with the new pro-

posed conjugate gradient method with the hybridization parameter βk given by (2.1).

In this numerical study, we selected 35 unconstrained optimization test problems in

Table 1 have been taken to the CUTE library [4] and [7] collection. Dimensions of

the test problems vary from 2 to 10000.

All the algorithms have been coded in MATLAB 2013 and compiler settings on the PC

machine (2.5 GHz, 3.8 GB RAM) with windows XP operating system. We compare

the computational results of our method (HMLSFR method) against the FR [15],

MLS [26], HLSCD [10], HLSFR [11], H3 [29]. In this numerical result, all algorithms

implement the strong Wolfe line search condition with δ = 10−4 and σ = 10−3.

The iteration is terminated if one of the following conditions is satisfied (i) ‖gk‖∞ <

10−6, where ‖.‖∞ is the maximum absolute component of a vector, (ii) The number

of iterations exceeded 2000, (iii) The computing time is more than 500s. We show the

performance difference clearly between the our method HLMLSFR and five conjugate

gradient algorithms.

We use the performance profile introduced by Dolan and Moré [12] to compare the

performance according to number iteration and CPU time to rule as follows. Let S is

the set of methods and P is the set of the test problems with np , ns are the number

of the test problems and the number of the methods, respectively. For each problem

p ∈ P and solver s ∈ S, denote τp,s be the computing time (the number of iterations

or CPU time) required to solve problems p ∈ P by solver s ∈ S. Then comparison

between different solvers based on the performance ratio is given by

rp,s =
τp,s

min {τp,i, 1 ≤ i ≤ ns}
.

Suppose that a parameter rM ≥ rp,s for all problems and solvers chosen, and rM =

rp,s if and only if solver s does not solve problem p. The overall evaluation of the

performance of the solvers is then given by the performance profile function given by

Figure 1 and Figure 2 give a performance comparison of the HMLSFR method with

those methods for the number of iterations and the CPU time. It very well may be

seen from these Figures, it is shown that the method of HMLSFR is superior when

compared to FR [15], MLS [26], HLSCD [10], HLSFR [11] , H3 [29] with the least

duration of CPU time corresponds to those in iteration number and vice versa. The

highest percentage of successful comparison is with HMLSFR at 98.82%, followed by

MLS which is 95.29%. However, the successful rate comparison for HLSCD, H3, FR

and HLSFR are low at 94.82%, 84.94% , 80% and 78.35% respectively. Hence, our

method (HMLSFR) successfully solved the test problems, and it is competitive with

the well-known conjugate gradient methods for unconstrained optimization. From

Table 2, it is clear that the average performance of the HMLSFR, FR, MLS, HLSCD,

HLSFR and H3 CG methods is very similar to the results obtained from Figs 1-2.

From these Figures and Table 2 of the simulation results we can see that the new

method HMLSFR performs better than the FR [15], MLS [26], HLSCD [10], HLSFR
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[11], H3 [29] methods for the given test problems. These obtained preliminary results

are indeed encouraging,

Fs (t) =
size {p : 1 ≤ p ≤ np, rp,s ≤ t}

np
,

where t ≥ 1 and size {p : 1 ≤ p ≤ np, rp,s ≤ t} is the number of elements in the
set {p : 1 ≤ p ≤ np, rp,s ≤ t} . This function Fs : [1,∞[ → [0, 1] is the distribution
function for the performance ratio. The value of Fs (1) is the probability that the
solver will win the rest of the solvers.

Table 1. The list of test problems.

Number Function Number Function

01 Zakharov 19 Griewank

02 Sumsquares 20 Exponential

03 Styblinski 21 Dixon

04 Sphere 22 Diagonal 2

05 Schwefel 223 23 Diagonal 1

06 Schwefel 24 Chang

07 Rosenbrock 25 Alpine 1

08 Ridge 26 Matyas

09 Raydan 2 27 Leon

10 Raydan 1 28 Branin

11 Rastrigin 29 Booth

12 Quartic 30 Beale

13 Quadratic 31 Nondia

14 Qing 32 Diag

15 Perquadratic 33 Linear Perturbed

16 Penalty 34 Cube

17 Himmelblau 35 Liarwhd

18 Hager

Figure 1. Performance profile based on the iteration number
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Figure 2. Performance profile based on the CPU time

Table 2: The simulation results. 

 

Methods HMLSFR FR MLS H3 HLSCD HLSFR 

F 
Dim 
 

TIME ITR TIME ITR TIME ITR Time ITR TIME ITR TIME ITR 

1 100 
 

0.051 3 0.046 3 0.042 3 
 

0.041 4 0.041 4 0.036 3 

2 100 
500 
 

0.696 
7.146 

121 
288 

0.126 
5.980 

106 
238 

0.126 
0.435 

7 
7 

0.677 
6.394 

116 
245 

0.636 
6.240 

112 
253 

0.615 
6.340 

107 
252 

3 100 
5000 

0.052 
2.111 
 

6 
6 

0.051 
2.152 

6 
6 

0.100 
3.340 

6 
6 

0.075 
2.691 

6 
6 

0.086 
2.801 

6 
6 

0.055 
2.194 

6 
6 

4 1000 
2000 
5000 

0.077 
0.086 
0.205 
 

3 
2 
2 
 

0.371 
0.720 
1.996 

10 
10 
12 

0.340 
0.522 
1.415 

7 
7 
7 

0.093 
0.152 
0.379 

3 
3 
3 

0.086 
0.152 
0.360 

3 
3 
3 

3.003 
Inf 
0.515 

85 
Inf 
4 

5 200 0.047 4 
 

0.025 3 
 

0.033 3 0.023 3 0.041 4 0.024 3 

6 25 
 

0.005 3 
 

0.005 2 0 .109 9 0.004 2 0.012 4 0.005 2 

7 2000 
5000 
10000 
 

0.437 
0.998 
1.825 

5 
5 
5 

0.312 
0.733 
1.466 

4 
4 
4 

0.390 
0.842 
1.419 
 

3 
3 
3 
 
 

0.265 
0.686 
1.373 

4 
4 
4 

0.390 
0.921 
1.125 

5 
5 
5 

0.593 
1.482 
2.932 

5 
5 
5 

8 30 0.031 27 Inf 
 

Inf 
 

0.063 26 1.108 707 Inf 
 

Inf 
 

Inf 
 

Inf 
 

9 1000 
1500 

0.031 
0.047 

1 
1 

0.046 
0.047 

2 
2 
 

0.062 
0.063 

2 
2 
 

0.031 
0.031 

2 
2 
 

0.031 
0.047 

1 
1 

0.047 
0.046 

2 
2 

10 1000 
5000 
10000 

0.031 
0.203 
0.374 

1 
1 
1 

0.047 
0.171 
0.343 

2 
2 
2 

0.047 
0.249 
0.452 

2 
2 
2 

0.047 
0.265 
0.546 
 

2 
2 
2 
 

0.063 
0.250 
0.421 

1 
1 
1 

0.047 
0.203 
0.375 

2 
2 
2 

11 60 0.031 5 3.307 816 0.109 8 Inf 
 

Inf 
 

0.140 21 0.172 30 

12 500 0.281 5 0.203 5 0.281 4 0.231 6 0.296 5 0.156 5 

13 500 0,031 15 0.015 15 0.047 12 0.015 15 0.032 15 0.032 15 

14 800 
900 

0.437 
0.374 

6 
5 

0.593 
0.593 

5 
5 

0.406 
0.390 

6 
6 

0.827 
0.765 

7 
6 

0.265 
0.281 

6 
5 

0.655 
0.546 

5 
5 

15 600 
2000 

0.062 
0.266 

2 
4 

0.031 
0.187 

2 
3 

0.344 
0.889 

9 
9 

0.031 
0.141 

2 
3 

0.031 
0.156 

2 
3 

0.047 
0.187 

3 
4 

16 4000 
5000 
10000 

0.125 
0.250 
1.622 

5 
5 
5 

0.109 
0.203 
0.765 

4 
4 
4 

0.249 
0.406 
1.264 

4 
4 
4 

0.078 
0.156 
0.531 

5 
4 
4 

0.109 
0.203 
0.765 

5 
5 
5 

0.093 
0.203 
0.639 

4 
4 
4 

17 500 
1000 

0.125 
0.219 

4 
4 

0.094 
0.171 
 

4 
4 

0.156 
0.296 

6 
6 

0.125 
0.218 

5 
5 

0.219 
0.421 

4 
4 

0.094 
0.172 

4 
4 

18 1000 
5000 

0.047 
0.187 

1 
1 

0.031 
0.249 

2 
2 

0.047 
0.265 

2 
2 

0.047 
0.219 

2 
2 

0.032 
0.188 

1 
1 

0.047 
0.219 

2 
2 
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Table 2:  The simulation results.  (Continued) 

 

Methods HMLSFR 
     

FR MLS H3 HLSCD HLSFR 

F Dim 
 

TIME ITR TIME ITR TIME ITR Time ITR TIME ITR TIME ITR 

19 2000 
5000 
10000 

0.093 
0.234 
0.422 

1 
1 
1 

1.591 
2.667 
8.845 

35 
44 
44 

0.125 
0.297 
0.281 

1 
1 
1 

8.810 
31.20 
66.78 

197 
288 
347 

0.109 
0.328 
0.515 
 

1 
1 
1 

8.610 
41.90 
40.37 

203 
294 
294 

20 1600 
2000 

0.234 
0.281 

3 
3 

2.168 
1.669 

26 
21 

0.140 
0.140 

2 
2 

0.125 
0.140 

2 
2 

0.171 
0.219 

3 
3 
 

0.156 
0.156 
 

3 
3 

21 400 0.141 5 
 

0.093 4 0.109 3 0.110 5 0.125 5 0.093 5 

22 3000 
5000 
8000 

0.009 
0.018 
0.044 
 

1 
1 
1 

0.010 
0.020 
0.037 

2 
2 
2 

0.010 
0.020 
0.047 

2 
2 
2 

0.008 
0.019 
0.038 

2 
2 
2 

0.007 
0.019 
0.035 

1 
1 
1 

0.006 
0.015 
0.030 

2 
2 
2 

23 3000 
5000 
8000 

0.002 
0.005 
0.009 

1 
1 
1 

0.223 
0.458 
1.482 

76 
93 
110 

0.003 
0.005 
0.010 

2 
2 
2 

1.843 
3.718 
9.759 

606 
664 
793 

0.002 
0.005 
0.009 

1 
1 
1 

1.923 
3.812 
10.311 

603 
663 
811 

24 50 0.067 4 0.040 3 0.074 5 0.042 4 0.036 5 0.034 3 

25 88 2.626 6 2.661 6 1.320 2 1.666 4 1.668 4 4.567 10 

26 2 0.011 2 0.015 2 0.033 2 0.100 2 1.119 67 0.025 3 

27 2 
 

0.066 4 
 

0.090 4 0.078 5 
 

0.064 5 0.073 5 0.070 4 
 

28 2 0.032 6 0.033 6 Inf 
 

Inf 
 

0.034 6 0.038 6 0.036 6 

29 2 0.021 3 0.027 3 0.024 2 0.015 2 0.056 5 0.066 5 

30 2 0.061 4 0.076 4 0.086 4 0.073 4 0.226 18 0.072 4 

31 300 
1000 

0.097 
0.264 

3 
3 

0.087 
0.313 

3 
3 

0.139 
0.350 

3 
3 

0.085 
0.389 

3 
3 

0.074 
0.303 

3 
3 

0.064 
0.182 

3 
3 

32 1000 
1500 

0.195 
0.262 

4 
4 

0.154 
0.225 

4 
4 

0.292 
0.319 

3 
3 

0.184 
0.263 

4 
4 

0.439 
0.641 

5 
5 

0.183 
0.265 

3 
3 

33 60 0.058 48 0.061 51 Inf 
 

Inf 
 

0.063 50 0.064 52 0.068 51 

34 150 0.091 
 

3 0.086 3 0.082 2 0.073 3 0.072 3 0.082 3 

35 1000 
1500 

0.184 
0.263 

4 
4 

0.167 
0.212 

4 
4 

0.238 
0.316 

3 
3 

0.174 
0.259 

4 
4 

0.390 
0.563 

5 
5 

0.181 
0.257 

2 
2 

5. Application in mode function

Nonparametric estimation has received a great deal of attention in both theoretical

and applied statistics literature. For the historical and mathematical survey, we refer

the reader to Sager [24]. In statistics, it is always interesting to study the central

tendency of the data, that is usually quantified using the location parameters (mean,

mode, median). The problem of estimating the mode function of a probability density

function (p.d.f.) has taken considerable attention in the past for both independent

and dependent data, and a number of distinguished papers deal with this topic. For

example, Parzen [21] and Eddy [13] for estimation of the unconditional mode in the

independent and identically distributed (i.i.d.) case.

In this section, we consider the problem of estimating the mode of a multivariate uni-

modal probability density f with support in Rn from i.i.d. standard normal random

variables X1, . . . , Xn with common probability density function f. This problem has

been investigated in numerous papers. To quote a few of them, Konakov [18] and

Samanta [25]. We assume that density f has a unique mode denoted by θ and defined

by
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f (θ) = max
x∈Rn

f (x) . (5.1)

A kernel estimator of the mode θ is defined as the random variable θ̂ which maximizer

the kernel estimator fn (x) of f (x), that is

fn
(
θ̂
)

= max
x∈Rn

fn (x) , (5.2)

where

fn (x) =
1

nhnn

n∑
i=1

K

(
x−Xi
hn

)
. (5.3)

The bandwidth (hn) is a sequence of positive real numbers which goes to zero as

n goes to infinity and the kernel K is a p.d.f. on Rn.
In this simulation, we choose standard Gaussian kernel defined by

K (x) =
1

(2π)
n
2

exp

−1

2

n∑
j=1

x2j

 .

The selection of the bandwidth h is an important and basic problem in kernel smooth-

ing techniques. In this simulation, we choose the optimal bandwidth by the cross-

validation method. In this context, we employ our proposed method to solve the

problem (5.2) under strong Wolfe line search technique and compare our method

with HLSFR [11], H3 [29], MLS [26] and FR [15] methods. We choose some initial
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points and we obtain the result as in the Table 3. According to this Table, it is clear

that the HMLSFR method is more efficient than HLSFR [11], H3 [29], MLS [26] and

FR [15] methods based on the number of iterations and CPU time for solving the

problem (5.2).

6. Conclusion

In the realm of optimization, this paper introduces a novel hybrid conjugate

gradient method named HMLSFR, which artfully blends the strengths of the MLS

and FR conjugate gradient algorithms. Our primary objective is to enhance the

convergence and overall efficiency of conventional conjugate gradient algorithms in

resolving optimization problems. Utilizing the strong Wolfe line search technique,

we meticulously establish the global convergence characteristics and the sufficient

descent property of our proposed method. Additionally, extensive numerical re-

sults convincingly demonstrate the remarkable robustness and effectiveness of our

approach. Furthermore, we delve into the practical applicability of our method in

the context of nonparametric estimation of the mode function. This application

showcases the versatility and potential of our method beyond traditional optimization.

Conflict of Interest: The authors declare that they have no conflict of interest.
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