
CCO
Commun. Comb. Optim.

c© 2025 Azarbaijan Shahid Madani University

Communications in Combinatorics and Optimization

Vol. 10, No. 2 (2025), pp. 319-334

https://doi.org/10.22049/cco.2023.28166.1465

Research Article

On the essential dot product graph of a commutative ring

Asma Ali†, Bakhtiyar Ahmad∗

Department of Mathematics, Aligarh Muslim University, Aligarh, India
†asma ali@rediffmail.com

∗bakhtiyarahmad2686@gmail.com

Received: 17 December 2022; Accepted: 30 October 2023

Published Online: 15 November 2023

Abstract: Let B be a commutative ring with unity 1 6= 0, 1 ≤ m <∞ be an integer

and R = B × B × · · · × B (m times). The total essential dot product graph ETD(R)

and the essential zero-divisor dot product graph EZD(R) are undirected graphs with
the vertex sets R∗ = R\{(0, 0, . . . , 0)} and Z(R)∗ = Z(R)\{(0, 0, . . . , 0)} respectively.
Two distinct vertices w = (w1, w2, . . . , wm) and z = (z1, z2, . . . , zm) are adjacent if and

only if annB(w·z) is an essential ideal of B (where w·z = w1z1+w2z2+· · ·+wmzm ∈ B).
In this paper, we prove some results on connectedness, diameter and girth of ETD(R)

and EZD(R). We classify the ring R such that EZD(R) and ETD(R) are planar,
outerplanar, and of genus one.

Keywords: essential graph, dot product graph, planar graph, genus, reduced ring,
essential ideal.
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1. Introduction

Assignment of a graph to a commutative ring was first started and studied by Beck [9].

He was mainly interested in coloring of the graph. Let R be a ring. In 1998, Anderson

et al. in [4] introduced the zero-divisor graph Γ(R) in which they considered the vertex

set to be the set of nonzero zero-divisors ofR, denoted by Z(R)∗. Two distinct vertices

are adjacent if their product is zero. Anderson et al. studied about connectedness,

diameter and girth of the graph Γ(R). Since then, a lot of work has been done to

explore the structure of a ring with respect to its zero-divisor graph, as one can see

[1–5, 10, 11]. Furthermore, the concept of essential graph EG(R) was introduced
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320 On the essential dot product graph of a commutative ring

by Nikmeher et al. [13]. They considered Z(R)∗ to be vertex set of the graph

and two distinct vertices w, z ∈ Z(R)∗ are adjacent if and only if annR(wz) ≤e R.

Nikmeher et al. observed that EG(R) is extended graph of zero-divisor graph Γ(R).

They studied about connectedness, diameter and girth of essential graph EG(R). By

considering this concept of a essential graph, many authors have shown their interest

for further study [6, 12, 14, 15].

Badawi [7] in his paper, considered the ring of the form R = B × · · · × B (m times),

1 ≤ m < ∞, where B is a commutative ring with 1 6= 0. He introduced the total

dot product graph TD(R) and zero-divisor dot product graph ZD(R), in which

vertices are taken from R∗ and Z(R)∗ respectively and two distinct vertices w =

(w1, w2, . . . , wm) and z = (z1, z2, . . . , zm) are adjacent if their normal dot product

is zero. Motivated by the idea of Badawi and concept of essential graph given by

Nikmeher et al., we introduce the “essential dot product graph”. In this paper, we

introduce two types of graphs, “total essential dot product graph” and “essential zero-

divisor dot product graph”, in which vertices are taken from R∗ = R\ {(0, 0, . . . , 0)}
and Z(R)∗ = Z(R) \ {(0, 0, . . . , 0)} respectively. Two distinct vertices w and z are

adjacent if and only if annB(w · z) ≤e B. We denote total essential dot product graph

by ETD(R) and essential zero-divisor dot product graph by EZD(R). It is easy

to observe that ETD(R) and EZD(R) are extended graphs of TD(R) and ZD(R)

respectively.

Throughout the paper, we consider ring to be a commutative ring with unity. We

denote Z(R), Z(B), R× and B× set of zero-divisor elements of R, set of zero-divisor

elements of B, unit elements of R and unit elements of B respectively. Let us recall

some basic definition of graph and ring regarding the present paper. A ring R is

said to be reduced if N(R) = {0}, where N(R) is the set of nilpotent elements of R.

An ideal I of R is said to be an essential ideal, if it has nonzero intersection with

every nonzero ideal of R. We denote ≤e R to be an essential ideal of R and ≤e B
to be an essential ideal of B. A graph G = (V,E) is defined as the set of vertices

and its edges. If every pair of distinct vertices of G are joined by a path, then G

is said to be connected. We define d(r, s) to be the length of a shortest path from

r to s, where r and s are vertices of a graph G. We say d(r, s) = ∞, if there is no

path between r and s, where r, s ∈ V . The diameter of graph is denoted and given by

diam(G) = max{d(r, s) : r, s ∈ V }. The girth of graph is the length of shortest cycle

in G, it is denoted by gr(G). We denote gr(G) = ∞, if it contains no cycle. If for

every distinct w, z ∈ V (G) are adjacent, then the graph is said to be complete graph.

A complete bipartite graph is a graph in which the vertex set V is divided into two

vertex sets say V1 and V2 such that for every x ∈ V1 is adjacent to every y ∈ V2, and

no two distinct vertices in the same set are adjacent, we denote this graph by Km,n,

where m,n ∈ N \ {0}. An outerplanar graph G is a graph such that it can be drawn

on a plane in a way that no vertex lies on the bounded region of the plane.

Let Sn be a sphere with n handles, where n ∈ N, i.e. Sn is an orientable with n

handles. The minimum n such that G can be orientable in Sn is defined as the genus

of the graph, we denote the genus of a graph G by γ(G). A graph G with γ(G) = 0 is

called a planar graph. A graph G with γ(G) = 1 is called a toroidal graph. A minor
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G′ of a graph G is obtained by contracting the edges of G and isolated vertices in G.

We symbolize the contracted edges by the vertex [u, z], where u, z ∈ V (G). If G has

minor G′, then γ(G′) ≤ γ(G).

In the second section, we study about the connectedness, diameter and girth of

ETD(R) and EZD(R) for m = 2, m ≥ 2 and m ≥ 3. In the third section, we es-

tablish the relation between TD(R), ZD(R), ETD(R) and EZD(R). In the fourth

section, we classify the ring R such that ETD(R) and EZD(R) to be a planar graph.

In the last section, we classify the ring R such that ETD(R) and EZD(R) to be of

genus one.

2. Properties of ETD(R) and EZD(R)

In this section, we discuss some results about connectedness, diameter and girth

of ETD(R) and EZD(R) and establish the affinity between graph EZD(R) and

EG(R).

Lemma 1. [ [13], Lemma 3.1 ] Let R be a nonreduced ring. Then the following statements
hold:

(i) For every u ∈ N(R)∗, u is adjacent to all other vertices of EG(R).

(ii) EG(R)[N(R)∗] is a (induced) complete subgraph of EG(R).

Lemma 2. Let B be a ring with 1 6= 0 and R = B × B × · · · × B (m times), where
2 ≤ m <∞. Then the following hold:

(i) For every w ∈ N(R)∗, w is adjacent to all other vertices of EZD(R) (respectively,
ETD(R)).

(ii) EZD(R)[N(R)∗] (respectively, ETD(R)[N(R)∗]) is a (induced) complete subgraph of
EZD(R) (respectively, ETD(R)).

Proof. (i) Let w = (w1, w2, . . . , wm) ∈ N(R)∗. Then for any z = (z1, z2, . . . , zm) ∈
R∗, we have w · z = w1z1 + · · · + wmzm = k ∈ N(B) (sum of nilpotent elements is

nilpotent). Now, we have to show that annB(k) ≤e B. We can assume that k 6= 0.

Let IB be a nonzero ideal of B. Let b ∈ IB \ {0}. Since k ∈ N(B), it is possible to

find n ≥ 1 such that bk(n−1) 6= 0 but bkn = 0. Hence, bk(n−1) ∈ annB(k) ∩ IB and

so, annB(k) ∩ IB 6= (0). Therefore, annB(k) is an essential ideal of B. Hence w is

adjacent to all other vertices of EZD(R) (respectively, ETD(R)).

(ii) It is clear from part (i).

Lemma 3. Let B be a ring with 1 6= 0 and R = B ×B × · · · × B (m times), 1 ≤ m <∞.
If annR(wz) ≤e R for some w, z ∈ R∗, then annB(w · z) ≤e B.
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Proof. Suppose that annR(wz) ≤e R, for some w = (w1, w2, . . . , wm), z =

(z1, z2, . . . , zm) ∈ R∗. Then we have to show that annB(w · z) ≤e B. Now, con-

sider the following cases:

Case (a) If wz = (0, 0, . . . , 0), then w · z = 0 and hence annB(w · z) ≤e B.

Case (b) wz 6= (0, 0, . . . , 0).

If m = 1, then wz = w ·z, R = B, and from annR(wz) ≤e R, it follows that annB(w ·
z) ≤e B. Hence, we can assume that m ≥ 2. As wz 6= (0, 0, . . . , 0), it follows that

wizi 6= 0 for at least one i ∈ {1, 2, . . . ,m}. We can assume without loss of generality

that w1z1 6= 0, . . . , wrzr 6= 0, whereas wjzj = 0 for all j ∈ {1, 2, . . . ,m} \ {1, . . . , r}.
Note that w · z =

∑r
k=1 wizi. Observe that annR(wz) = I1 × I2 × · · · × Im with

Ii = annB(wizi) for each i ∈ {1, 2, . . . ,m}. Let IB be a nonzero ideal of B. Let J be

the ideal of R defined by J = IB × (0)× · · · × (0). Since annR(wz) ≤e R, it follows

that IB ∩ annB(w1z1) 6= (0). Suppose that r ≥ 2. Consider the ideal J ′ of R defined

by J ′ = (0)× (IB ∩ annB(w1z1))× (0)× · · · × (0). From I1 × I2 × · · · × Im, it follows

that (IB ∩ annB(w1z1)) ∩ annB(w2z2) 6= (0). The above argument can be repeated

and we arrive that there exists b ∈ IB \{0} such that bwizi = 0 for each i ∈ {1, . . . , r}.
Hence, b(w1z1 +w2z2 + · · ·+wmzm) = 0 = b(w ·z). Therefore, IB ∩annB(w ·z) 6= (0).

This proves that annB(w · z) ≤e B.

Remark 1. Converse of the Lemma 3 need not be true in general.

Example 1. Let B = Z12 and R = Z12 × Z12, then for a = (1, 1), b = (3, 3) ∈ R∗,
annR((1, 1)(3, 3)) = annR(3, 3) �e R but annB((1, 1) · (3, 3)) = annB(6) ≤e B (since 6 ∈
N(B)).

Lemma 4. Let B be a ring with 1 6= 0 and R = B × B × · · · × B (m times), where
2 ≤ m < ∞. If w − z is an edge of EG(R), then w − z is also an edge of EZD(R), where
w, z ∈ Z(R)∗ .

Proof. Let w, z ∈ Z(R)∗ and w − z is an edge of EG(R), then annR(wz) ≤e

R. Therefore, from Lemma 3, annB(w · z) ≤e B. Hence w − z is also an edge of

EZD(R).

Theorem 1. Let B be a ring with 1 6= 0 and R = B × B × · · · × B (m times), where
2 ≤ m < ∞. Then EZD(R) is connected and diam(EZD(R)) ≤ 3. Moreover, if EZD(R)
contains a cycle, then gr(EZD(R)) ≤ 4.

Proof. It follows from Lemma 4 that EG(R) is a spanning subgraph of EZD(R).

Hence, by [[13], Theorem 2.1], we get that EZD(R) is connected, diam(EZD(R))

≤ 3. By assumption, EZD(R) contains a cycle. Suppose that m ≥ 3. For each

i ∈ {1, 2, 3, . . . ,m}, let ei denote the element of R whose i-th coordinate equal 1 and

j-th coordinate equals 0 for all j ∈ {1, 2, . . . ,m}\{i}. Note e1−e2−e3−e1 is a cycle

of length 3 in EZD(R). Therefore, gr(EZD(R)) = 3 if m ≥ 3. Assume that m = 2.
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If B is not reduced, then there exists b ∈ B \ {0} such that b2 = 0. Observe that

(b, 0)−(0, b)−(1, 0)−(b, 0) is a cycle of length 3 in EZD(R). Hence gr(EZD(R)) = 3.

Suppose that B is reduced. Then either B is an integral domain or B is not an integral

domain. If B is an integral domain, then Z(R)∗ = V1∪V2, where V1 = {(b, 0)|b ∈ B∗}
and V2 = {(0, c)|c ∈ B∗}. It is not hard to verify that EZD(R) = Γ(R) is a complete

bipartite graph with vertex partition Z(R)∗ = V1 ∪ V2. Since EZD(R) contains a

cycle by assumption, it follows that gr(EZD(R)) = 4. Assume that B is reduced ring

but not an integral domain. Then there exist a, b ∈ B \ {0} such that ab = 0. Then

a 6= b and (a, 0) − (b, 0) − (0, a) − (a, 0) is a cycle of length 3 in EZD(R). Hence,

gr(EZD(R)) = 3. Therefore, if EZD(R) contains a cycle, then gr(EZD(R)) ≤
4.

Theorem 2. Let B be a nonreduced ring with 1 6= 0 and R = B×B× · · · ×B (m times),
where 2 ≤ m <∞. Then the following hold:

(i) ETD(R) is connected and diam(ETD(R)) = 2.

(ii) EZD(R) is connected and diam(EZD(R)) = 2.

Proof. (i) Since B is a non-reduced ring, then there exist n = (c, c, . . . , c) ∈ N(R)∗,

where c ∈ N(B)∗. We know from Lemma 2-(i) that n is adjacent to all the vertices

of ETD(R). Hence, we obtain that ETD(R) is connected and diam(ETD(R)) ≤ 2.

As c ∈ N(B)∗, it follows that 1 + c ∈ B× and 1 + c 6= 1. Let x = (1, 0, . . . , 0) and

y = (1 + c, 0, . . . , 0). It is clear that x · y = 1 + c and so, (0) = annB(x · y) �e B.

Therefore, x and y are not adjacent in ETD(R). Hence, diam(ETD(R)) ≥ 2 and

so, diam(ETD(R)) = 2.

(ii) It can be shown as in the proof of (i) that diam(EZD(R)) = 2.

Lemma 5. Let B be a ring with 1 6= 0 and R = B × B × · · · × B (m times), where
2 ≤ m <∞. Then the following hold:

(i) TD(R) is a spanning subgraph of ETD(R).

(ii) ZD(R) is a spanning subgraph of EZD(R).

Proof. (i) Let w, z ∈ R∗ be such that w − z is an edge of TD(R). Then

w · z = 0 and so, annB(w · z) ≤e B. Therefore, w − z is an edge of ETD(R). As

V (TD(R)) = V (ETD(R)) = R∗, it follows that TD(R) is a spanning subgraph of

ETD(R).

(ii) This can be proved using arguments similar to those that are used in the proof of

(i).

Remark 2. Converse of the Lemma 5 need not be true in general.
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Example 2. Let B ∼= Z4 and R = B × B. Consider (2, 0) and (1, 0) ∈ R∗. Then
(2, 0) · (1, 0) = 2 6= 0 and 2 ∈ N(B). Hence (2, 0)− (1, 0) is an edge in ETD(R) (respectively,
EZD(R)) but not an edge in TD(R) (respectively, ZD(R)).

Remark 3. Let B be a ring with 1 6= 0 and R = B× · · · ×B (m times), 2 ≤ m <∞. It is
shown in Lemma 5 that TD(R) (respectively, ZD(R)) is a spanning subgraph of ETD(R)
(respectively, EZD(R)). Assume that B is a reduced ring. Then it is not hard to verify
that for any any b ∈ B, annB(b) ∩ Bb = (0). Let w, z ∈ R∗ be such that w − z is an
edge ETD(R). Then annB(w · z) ≤e B. From annB(w · z) ∩ B(w · z) = (0), it follows
that w · z = 0. Therefore, w − z is an edge of TD(R). Hence, ETD(R) is spanning
subgraph of TD(R) and so, EZD(R) = ZD(R). Similarly, EZD(R) is spanning subgraph
of ZD(R) and so, EZD(R) = ZD(R). Thus if B is a reduced ring, ETD(R) = TD(R) and
EZD(R) = ZD(R).

Theorem 3. Let B (not an integral domain) be a reduced ring with 1 6= 0 and R = B×B.
Then

(i) ETD(R) is a connected graph and diam(ETD(R)) = 3.

(ii) diam(EZD(R)) = 3.

(iii) gr(ETD(R)) = gr(EZD(R)) = 3.

Proof. By hypothesis, B is a reduced ring but not an integral domain. We Know

from Remark 3 that ETD(R)= TD(R) and EZD(R)= ZD(R).

(i) This follows from [[7], Theorem 2.3(1)].

(ii) This follows from [[7], Theorem 2.3(2)].

(iii) This follows from [[7], Theorem 2.3(3)].

Theorem 4. Let B be a ring with 1 6= 0 and R = B×B×· · ·×B (m times), 3 ≤ m <∞.
Then ETD(R) is connected and diam(ETD(R)) = 2.

Proof. From [[7], Theorem 2.4], TD(R) is connected and diam(TD(R)) = 2.

By Lemma 5-(i), TD(R) is a subgraph of ETD(R). Therefore, ETD(R) is con-

nected and diam(ETD(R)) ≤ diam(TD(R)) = 2. Now, it remains to prove that

diam(ETD(R)) = 2. For this, we have to show that there exists a, b ∈ R∗ such that

d(a, b) = 2. Let a = (1, 1, 1, 0, . . . , 0), b = (1, 0, 0, 0, . . . , 0) ∈ R∗, then annB(a ·b) �e B
and hence d(a, b) > 1. Also, we have d(a, b) ≤ 2. Therefore, diam(ETD(R)) = 2.

Theorem 5. Let B be a reduced ring with 1 6= 0 and R = B×B×B. Then the following
statements hold:

(i) diam(EZD(R)) = 3 if B is an integral domain.

(ii) diam(EZD(R)) = 2 if B is not an integral domain.
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Proof. We know from Theorem 1 that diam(EZD(R)) ≤ 3. Let w = (1, 1, 0) and

z = (0, 1, 1). It is clear that w, z ∈ Z(R)∗ and w 6= z. Observe that annB(w · z) �e

B. Therefore, d(w, z) ≥ 2 in EZD(R). Hence, diam(EZD(R)) ≥ 2.

(i) Assume that B is an integral domain. We know from Remark 3 that EZD(R) =

ZD(R). Hence, we obtain from [[7], Theorem 2.5(1)] that diam(EZD(R)) = 3.

(ii) Assume that B is not an integral domain. We know from [[7], Theorem 2.5(2)]

that diam(ZD(R)) = 2. As ZD(R) is a spanning subgraph of EZD(R), by Lemma

5-(ii), we obtain that diam(EZD(R)) ≤ 2. It is noted that at the beginning of the

proof of this theorem that diam(EZD(R)) ≥ 2 and so, diam(EZD(R)) = 2.

Theorem 6. Let B be a reduced ring with 1 6= 0 and R = B × B × · · · × B (m times),
where 2 ≤ m <∞. Then the followings statements are equivalent:

(i) EZD(R) is complete.

(ii) B ∼= Z2.

(iii) EZD(R) = K1,1

Proof. (i) =⇒ (ii) Assume that EZD(R) is complete graph. If m ≥ 3, then

a = (1, 0, 0, . . . , 0) and b = (1, 1, 0, . . . , 0) ∈ Z(R)∗ are such that annB(a · b) =

annB(1) = (0)�e B. This is a contradiction and so, m = 2. We claim that |B| = 2.

If |B| ≥ 3, then it is possible to find w ∈ B \ {0, 1}. Let x = (1, 0) and y = (w, 0).

It is clear that x, y ∈ Z(R)∗ and x 6= y. Note that x · y = w. Since B is reduced,

annB(w) ∩ Bw = (0). Hence, annB(w) �e B. Therefore, x and y are not adjacent in

EZD(R). This is a contradiction and so, |B| = 2. Therefore, m = 2 and B ∼= Z2.

(ii) =⇒ (iii) and (iii) =⇒ (i) are clear.

Theorem 7. Let B be a ring with 1 6= 0 and R = B × B × · · · × B (m times), where
3 ≤ m <∞. Then gr(ETD(R)) = gr(EZD(R)) = 3.

Proof. The proof of theorem is contained in the proof of Theorem 1.

3. Relationship between TD(R) and ETD(R) (respectively,
ZD(R) and EZD(R))

Let B be a ring with 1 6= 0 and R = B × B × · · · × B (m times), 2 ≤ m < ∞.

If B is a reduced ring, then it is noted in Remark 3 that TD(R) = ETD(R) and

ZD(R) = EZD(R). In this section, with the help of results from [7] and [13], we

deduce several corollaries and we characterize R such that EG(R) = EZD(R).

Corollary 1. Let B be an integral domain and R = B × B. Then the following hold:
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(i) EG(R) = EZD(R),

(ii) ETD(R) is disconnected.

Proof. (i) We know from Remark 3 that ZD(R) = EZD(R). Note that Γ(R) =

ZD(R) by [[7], Theorem 2.1] and sinceR is reduced Γ(R) = EG(R) by [[13], Theorem

2.2]. Therefore, EG(R) = EZD(R).

(ii) Note that TD(R) = ETD(R) by Remark 3 and we know from [[7], Theorem 2.1]

that TD(R) is disconnected. Therefore, ETD(R) is disconnected.

Corollary 2. Let B be a reduced ring with 1 6= 0 and R = B × B × · · · × B (m times),
where 2 ≤ m <∞. Then EZD(R) = EG(R) if and only if R ∼= Z2×Z2×Z2 or m = 2 and
B is an integral domain.

Proof. Since B is a reduced ring by hypothesis, ZD(R) = EZD(R) by Remark 3.

As R is reduced, Γ(R) = EG(R) by [[13], Theorem 2.2]. Therefore, EZD(R) =

EG(R) if and only if ZD(R) = Γ(R). Hence, we obtain from [[7], Theorem 2.2] that

EZD(R) = EG(R) if and only if R ∼= Z2 × Z2 × Z2 or m = 2 and B is an integral

domain.

Theorem 8. Let B be a nonreduced ring with 1 6= 0 and R = B×B× · · · ×B (m times),
where 2 ≤ m <∞. Then the following hold:

(i) TD(R) 6= ETD(R).

(ii) ZD(R) 6= EZD(R).

Proof. (i) To show that TD(R) 6= ETD(R), we have to show that there exists an

edge in ETD(R), which is not an edge of TD(R). Since B is nonreduced ring, then

there exists a nonzero nilpotent element i.e f ∈ N(B)∗. Now, consider (f, 1, 0, . . . , 0)

and (1, 0, 0, . . . , 0) ∈ R. Clearly, ((f, 1, 0, . . . , 0) · (1, 0, 0, . . . , 0)) = f ∈ N(B)∗.

From Lemma 2-(i), annB((f, 1, 0, . . . , 0) · (1, 0, 0, . . . , 0)) ≤e B. This implies that

(f, 1, 0, . . . , 0)− (1, 0, 0, . . . , 0) is an edge in ETD(R) but not in TD(R).

(ii) Proof is similar as above.

4. Planarity and outerplanarity of ETD(R) and EZD(R)

Lemma 6. (Kuratowski Theorem) [16] A graph G is planar if and only if it contains no
subdivision of K5 or K3,3.

Lemma 7. [16] A graph G is outerplanar if and only if it contains no subdivision of K4

or K2,3.
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Theorem 9. Let B be a ring with 1 6= 0 and R = B × B × · · · × B (m times), where
2 ≤ m < ∞. If EZD(R) is planar if and only if R is isomorphic to one of the rings from
the collection { Z2 × Z2 × Z2, Z2 × Z2, Z3 × Z3}.

Proof. Assume that EZD(R) is planar. Let i ∈ {1, 2, . . . ,m}. It is convenient to

denote the element of R whose i − th coordinate equals 1 and j − th coordinates

equals 0 for all j ∈ {1, 2, . . . ,m} \ {i} by ei. It is clear that eiej = (0, 0, . . . , 0) for

all distinct i, j ∈ {1, 2, . . . ,m}. We first claim that m ≥ 3. Suppose that m ≥ 4.

Let V1 = {e1, e2, e1 + e2} and V2 = {e3, e4, e3 + e4}. It is clear that V1 ∪ V2 ⊂
Z(R)∗ = V (EZD(R)). It is clear that V1 ∩ V2 = ∅. For any x ∈ V1 and y ∈ V2,

xy = (0, 0, 0, 0, . . . , 0). Therefore, x and y are adjacent in EZD(R). Note that

the subgraph of EZD(R) induced by V1 ∪ V2 contains K3,3 as a subgraph. This is

impossible by Lemma 6, since EZD(R) is planar by assumption. Therefore, m ≤ 3.

We claim that B is reduced. If B is not reduced, then it is possible to find b ∈ B \ {0}
such that b2 = 0. Let W = {e1, e2, (b, 0), (0, b), (b, b)} in the case m = 2 (respectively,

W = {e1, e2, (b, 0, 0), (0, b, 0), (b, b, 0)} in the case m = 3). It is not hard to verify that

the subgraph of EZD(R) induced by W is a clique with 5 vertices. This is possible

by Lemma 6, since EZD(R) is planar by assumption. Therefore, B is reduced.

Suppose that m = 3. If |B| ≥ 3, then there exists b ∈ B \ {0, 1}. Let

V1 = {e1, (b, 0, 0), e2}, V2 = {e3, (0, 0, b), (0, b, 0)}, and V3 = {e1 + e3}. Note that

V1 ∪ V2 ∪ V3 ⊂ Z(R)∗. Observe that for each y ∈ V2, e1y = (b, 0, 0)y = (0, 0, 0),

e2e3 = e2(0, 0, b) = (0, 0, 0), e2−e1 +e3− (0, b, 0) is a path of length two in EZD(R).

Consider the subgraph H of EZD(R) induced by V1∪V2∪V3. The edges e2− e1 + e3
and e1 + e3− (0, b, 0) are in series of this subgraph (that is, their common end vertex

is of degree two in H). By merging these edges in series, we obtain a subgraph of

H isomorphic to K3,3. This is impossible by Lemma 6, since EZD(R) is planar by

assumption. Therefore, |B| ≤ 2 and so, R ∼= Z2 × Z2 × Z2.

Suppose that m = 2. In this case, we claim that |B| ≤ 3. If |B| ≥ 4, then there exist

distinct b1, b2 ∈ B \ {0, 1}. Let V1 = {e1, (b1, 0), (b2, 0)} and V2 = {e2, (0, b1), (0, b2)}.
Note that V1 ∩V2 = ∅. For any x ∈ V1 and y ∈ V2, x · y = 0. Therefore, the subgraph

of EZD(R) induced by V1 ∪ V2 contains K3,3 as a subgraph. This is impossible by

Lemma 6, since EZD(R) is planar by assumption. Therefore, |B| ≤ 3. Hence, R is

isomorphic to Z2 × Z2 or Z3 × Z3.

Thus if EZD(R) is planar, then R is isomorphic to one of the rings from the collec-

tion {Z2 × Z2 × Z2, Z2 × Z2, Z3 × Z3}.
Conversely, assume that R is isomorphic to one of the rings from the collection

{Z2 × Z2 × Z2, Z2 × Z2, Z3 × Z3}, then from Figure 1, Figure 2 and Figure 3 that

EZD(R) is planar.

Theorem 10. Let B be a ring with 1 6= 0 and R = B × B × · · · × B (m times), where
2 ≤ m < ∞. If ETD(R) is planar if and only if R is isomorphic to one of the rings from
the collection { Z2 × Z2 × Z2, Z2 × Z2, Z3 × Z3}.
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(1,0,1)

(1,0,0)

(0,1,1)

(0,1,0)

(0,0,1)

(1,1,0)

Figure 1. Planar embedding of EZD(Z2 × Z2 × Z2)

(0,2)(1,0)

(0,1) (2,0)

Figure 2. Planar embedding of EZD(Z3 × Z3)

(1,0) (0,1)

Figure 3. Planar embedding of EZD(Z2 × Z2)

Proof. Assume that ETD(R) is planar. Hence, its subgraph EZD(R) is planar.

Therefore, we obtain from Theorem 9 that R is isomorphic to one of the rings from

the collection {Z2 × Z2 × Z2, Z2 × Z2, Z3 × Z3}.
Conversely, if R is isomorphic to one of the rings from the collection { Z2 × Z2 × Z2,

Z3×Z3, Z2×Z2}, then it is clear from Figure 4, Figure 5, and Figure 6 that ETD(R)

is planar.

(1,1,1)

(1,0,1)

(1,0,0)

(0,1,1)

(0,1,0)

(0,0,1)

(1,1,0)

Figure 4. Planar embedding of ETD(Z2 × Z2 × Z2)
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(0,2)(1,0)

(0,1) (2,0) (2,1) (2,2)

(1,1) (1,2)

Figure 5. Planar embedding of ETD(Z3 × Z3)

(1,0) (0,1) (1,1)

Figure 6. Planar embedding of ETD(Z2 × Z2)

Theorem 11. Let B be a ring with 1 6= 0 and R = B × B × · · · × B (m times), where
2 ≤ m < ∞. Then EZD(R) is outerplanar if and only if R is isomorphic to one of the
rings from the collection { Z2 × Z2 × Z2, Z2 × Z2, Z3 × Z3}.

Proof. Assume EZD(R) is outerplanar. Then EZD(R) is necessarily planar.

Hence, we obtain from Theorem 9, R is isomorphic to one of the rings from the

collection {Z2 × Z2 × Z2, Z2 × Z2, Z3 × Z3}.
Conversely, if R is isomorphic to one of the rings from the collection { Z2 × Z2 × Z2,

Z2×Z2, Z3×Z3}, then it is clear from Figure 1, Figure 2 and Figure 3 that EZD(R)

is outerplanar.

Theorem 12. Let B be a ring with 1 6= 0 and R = B × B × · · · × B (m times), where
2 ≤ m <∞. Then ETD(R) is outerplanar if and only if R is isomorphic to either Z3 × Z3

or Z2 × Z2.

Proof. Assume that ETD(R) is outerplanar. Then ETD(R) is planar. Hence, we

obtain from Theorem 10 that R is isomorphic to one of the rings from the collection

{ Z2 × Z2 × Z2, Z2 × Z2, Z3 × Z3}. Consider T = Z2 × Z2 × Z2. It is clear from

Figure 4, that the edges of ETD(T ), (1, 0, 0) − (0, 1, 1) and (0, 1, 1) − (1, 1, 1) are in

series, (0, 0, 1)− (1, 1, 0) and (1, 1, 0)− (1, 1, 1) are in series, and (0, 1, 0)− (1, 0, 1) and

(1, 0, 1) − (1, 1, 1) are in series. By merging the above three pairs of edges in series,

the resulting graph is K4. Hence, ETD(T ) is not outerplanar by Lemma 7. Thus if

ETD(R) is outerplanar, then R is isomorphic to either Z3 × Z3 or Z2 × Z2.

Conversely, if R is isomorphic to either Z3 × Z3 or Z2 × Z2, then it is clear from

Figures 5, 6 that ETD(R) is outerplanar.
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5. EZD(R) and ETD(R) of genus one

In this section, we classify the ring R such that EZD(R) and ETD(R) are of genus

one by using the Euler characteristic formula and a method of insertion and deletion.

We use some results that is needed for classification of the genus of the EZD(R) and

ETD(R).

Lemma 8. [17] For α, β ≥ 2, γ(Kα,β) = d(α− 2)(β − 2)/4e. In particular, γ(K4,4) =
γ(K3,β) = 1, if β = 3, 4, 5, 6 and γ(K5,4) = γ(K6,4) = γ(Kα,3) = 2, if α = 7, 8, 9, 10.

Theorem 13. [8] The genus of a graph is the sum of the genera of its blocks.

Example 3. Let B be a ring with 1 6= 0 and R = B × B × · · · × B (m ≥ 4 times). Then
γ(EZD(R)) ≥ 2.

Proof. Let us consider the set H = {(1, 0, 0, 0, . . . , 0), (0, 0, 0, 1, 0, . . . , 0), (0, 0, 1, 0, . . . , 0),

(1, 1, 0, 0, . . . , 0), (1, 1, 0, 0, . . . , 0), (0, 1, 0, 1, 0, . . . , 0), (1, 0, 1, 0, . . . , 0), (0, 1, 1, 0, . . . , 0),

(1, 0, 0, 1, 0, . . . , 0), (1, 1, 1, 0, . . . , 0), (0, 1, 1, 1, 0, . . . , 0), (1, 0, 1, 1, 0, . . . , 0), (1, 1, 0, 1, 0, . . . , 0)}.
Then H ⊆ V (EZD(R)). On merging the edges (1, 1, 0, 0, . . . , 0)− (0, 0, 1, 1, 0, . . . , 0),

(0, 1, 0, 1, 0, . . . , 0) − (1, 0, 1, 0, . . . , 0) and (0, 1, 1, 0, . . . , 0) − (1, 0, 0, 1, 0, . . . , 0), then

the graph obtained from the set H contain an induced subgraph K3,7 (see Figure 7).

Therefore, from Lemma 8, γ(EZD(R)) ≥ 2.

[(1,1,0,0,...,0),(0,0,1,1,0,...,0)] [(0,1,0,1,0,...,0),(1,0,1,0,...,0)] [(0,1,1,0,...,0),(1,0,0,1,0,...,0)]

(0,0,0,1,0,...,0) (0,0,1,0,...,0) (1,1,1,0,...,0) (1,1,0,1,0,...,0) (0,1,1,1,0,...,0)

(1,0,1,1,0,...,0)

(1,0,...,0)

Figure 7. Minor subgraph K3,7

Example 4. Let B ∼= Z3 and R = B × B × B. Then γ(EZD(R)) ≥ 2.

Proof. Consider the set V = {(1, 1, 0), (0, 0, 1), (0, 1, 0)(0, 0, 2), (1, 2, 0), (2, 1, 0), (1, 1,

0)} and V ′ = {(1, 0, 0), (0, 1, 1), (2, 0, 0), (0, 2, 0), (0, 2, 1), (0, 1, 2), (0, 2, 2)}. On merg-

ing (0, 1, 0) − (0, 1, 1) in V , then the graph obtained with vertex set V contains a

induced subgraph K3,3 (see Figure 8). On merging (2, 0, 0)− (0, 2, 0) in V ′, then the

graph contains K3,3 as a induced subgraph (see Figure 9). As we obtain the minor

of the graph containing two disjoint copies of K3,3. Therefore, from Theorem 13 and

the Lemma 8, γ(EZD(R)) ≥ 2.
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[(0,0,1),(0,1,0)] (1,2,0) (2,1,0)

(0,0,2) (1,1,0) (2,2,0)

Figure 8. Minor subgraph of EZD(Z3 × Z3 × Z3)

(1,0,0) (0,1,2) (0,2,1)

[(2,0,0),(0,2,0)] (0,1,1) (0,2,2)

Figure 9. Minor subgraph of EZD(Z3 × Z3 × Z3).

Main results of this section

Theorem 14. Let B be a ring 1 6= 0 and R = B × B × · · · × B (m times), where
2 ≤ m <∞. Then γ(EZD(R)) = 1 if and only if R is isomorphic to F4 × F4 or Z5 × Z5.

Proof. If m ≥ 4, then by Example 3 we have γ(EZD(R)) ≥ 2. If m = 3

and B ∼= Z3, then by Example 4 we have γ(EZD(R)) ≥ 2. If m = 3

and |B| ≥ 4, then let 1, a, b ∈ B \ {0} be distinct elements of B and con-

sider the sets H = {(1, 0, 0), (a, 0, 0), (b, 0, 0), (0, 1, 1), (0, a, a), (0, b, b)} and H ′ =

{(0, 0, 1), (0, 0, a), (0, 0, b), (1, 1, 0), (a, a, 0), (b, b, 0)}. Clearly the graph obtained from

the set H and H ′ contain an induced subgraph K3,3. As we obtain the minor

of the graph containing two disjoint copies of K3,3. Therefore, from Theorem 13

and the Lemma 8, γ(EZD(R)) ≥ 2. Now, if m = 2 and B is nonreduced ring,

then |B| ≥ 4. Let us take z ∈ N(B)∗ and 1 6= k ∈ B×. Consider the set

H = {a, b, c, d, e, u, v, w, x, y}, where a = (z, 0), b = (z, z), c = (0, z), d = (1, z),

e = (z, 1), u = (1, 0), v = (0, 1), w = (k, 0), x = (0, k) and y = (k, z). On contracting

edge d− e, then the minor of the graph obtained from the set H contain the induced

subgraph, which is isomorphic to K4,5 (see Figure 10). As H is the least vertex set

that contain in every vertex of a graph EZD(R), if B is nonreduced ring. Therefore,

γ(EZD(R)) > 1.

If m = 2 and |B| ≥ 6. Then one can easily observe that EZD(R) has a induced

subgraph K5,5, so by Lemma 8, γ(EZD(R)) > 1. Now, remaining ring to be check;

Z2×Z2, Z3×Z3, Z2×Z2×Z2, F4×F4 and Z5×Z5. If we consider the rings Z2×Z2,

Z3×Z3 and Z2×Z2×Z2, then from Theorem 9, EZD(R) are planar graph. So, the

possible ring R such that EZD(R) to be genus one are F4 × F4 or Z5 × Z5.
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(a) (b) (c) [(d,e)]

(u) (v)
(w) (x) (y)

Figure 10. Minor subgraph K4,5

Conversely, if R is isomorphic to F4 × F4 or Z5 × Z5. Then the graph obtained

from F4 × F4 and Z5 × Z5 are isomorphic to K3,3 and K4,4, so from Lemma 8,

γ(EZD(R)) = 1.

(1,4) (2,3) (3,2)

(1,1) (2,2)
(3,3)

Figure 11. Unit subgraph of ETD(F5 × F5)

(1,0) (2,0) (3,0) (4,0)

(0,1) (0,2)
(0,3) (0,4)

Figure 12. Zero-divisor subgraph of ETD(F5 × F5)

Theorem 15. Let B be a ring with 1 6= 0 and R = B × B × · · · × B (m times), where
2 ≤ m <∞. Then the genus of ETD(R) is atleast 2.

Proof. Since EZD(R) is an induced subgraph of ETD(R), then from Theorem 14,

the only possibility of ETD(R) to be of genus one are F4×F4 or Z5×Z5. If we consider

Z5 × Z5, then it contain the subgraph which have disjoint copies of K3,3 and K4,4

(see Figures 11 and 12). So, from Lemma 8 and Theorem 13, γ(ETD(Z5 ×Z5)) ≥ 2.

Similarly, if we consider F4×F4, then it contain two disjoint copies of K3,3. Therefore,
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from Lemma 8 and Theorem 13, γ(ETD(F4 × F4) ≥ 2. Hence, genus of ETD(R) is

atleast 2.
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