[1] H. Abdollahzadeh Ahangar and S.R. Mirmehdipour, Bounds on the restrained Roman domination number of a graph, Commun. Comb. Optim. 1 (2016), no. 1, 75–82.
https://doi.org/10.22049/cco.2016.13556
[2] M. Alishahi and D.A. Mojdeh, Global outer connected domination number of a graph, Algebra Discrete Math. 25 (2018), no. 1, 18–26.
[4] G. Chartrand and L. Lesniak, Graphs and Digraphs, 4th ed., CRC press, Boca Raton, 2010.
[5] M. Chellali, N. Jafari Rad, S.M. Sheikholeslami, and L. Volkmann, Roman domination in graphs, Topics in Domination in Graphs (T.W. Haynes, S.T. Hedetniemi, and M.A. Henning, eds.), Springer, Berlin/Heidelberg, 2020, pp. 365–409.
https://doi.org/10.1007/978-3-030-51117-3 11
[7] M. Chellali, N. Jafari Rad, S.M. Sheikholeslami, and L. Volkmann, Varieties of Roman domination, Structures of Domination in Graphs (T.W. Haynes, S.T. Hedetniemi, and M.A. Henning, eds.), Springer, Berlin/Heidelberg, 2021, p. 273–307.
[10] D. Deli´c and C. Wang, The global connected domination in graphs, Ars Combin. 114 (2014), 105–110.
[12] G.S. Domke, J.H. Hattingh, and M.A. Henning, Restrained domination in graphs with minimum degree two, 35 (2000), 239–254.
[15] T.W. Haynes, S. Hedetniemi, and P. Slater, Fundamentals of Domination in Graphs (1st ed.), CRC press, 1998.
[17] N. Jafari Rad and L. Volkmann, Roman domination perfect graphs, An. St. Univ. Ovidius Constanta, Ser. Mat. 19 (2011), no. 3, 167–174.
[18] R. Kala and T.R.N. Vasantha, Global Restrained Domination Number of a Graph, pp. 39–49, Narosa Publishing House Pvt. Limited, New Dehli, 2009.
[19] V.R. Kulli and B. Janakiram, The total global domination number of a graph, Indian J. Pure Appl. Math. 27 (1996), no. 6, 537–542.
[21] A.C. Martinez, A. Martinez Arias, and M.M. Castillo, A characterization relating domination, semitotal domination and total Roman domination in trees, Commun. Comb. Optim. 6 (2021), no. 2, 197–209.
https://doi.org/10.22049/cco.2020.26892.1157
[26] I. Stewart, Defend the Roman empire!, Sci. Am. 281 (1999), no. 6, 136–138.