[2] K.C. Das, On comparing Zagreb indices of graphs, MATCH Commun. Math. Comput. Chem. 63 (2010), no. 2, 433–440.
[3] H. Deng, S. Balachandran, S.K. Ayyaswamy, and Y.B. Venkatakrishnan, On the harmonic index and the chromatic number of a graph, Discrete Appl. Math. 161 (2013), no. 16-17, 2740–2744.
https://doi.org/10.1016/j.dam.2013.04.003
[5] M. Eliasi, A. Iranmanesh, and I. Gutman, Multiplicative versions of first Zagreb index, MATCH Commun. Math. Comput. Chem. 68 (2012), no. 1, 217–230.
[6] S. Fajtlowicz, On conjectures of Graffiti-II, Congr. Numer. 60 (1987), 187–197.
[7] G. Fath-Tabar, Zagreb polynomial and Pi indices of some nano structures., Digest J. Nanomat. Biostr. 4 (2009), no. 1, 189–191.
[11] I. Gutman and B. Furtula, Recent Results in the Theory of Randić Index, Univ. Kragujevac, Kragujevac, 2008.
[12] I. Gutman, B. Furtula, E. Milovanović, and I.Z. Milovanović, Bounds in Chemical Graph Theory-Mainstreams, Mathematical Chemistry Monograph no. 19, Univ. Kragujevac, Kragujevac (Serbia), 2017.
[14] J.C. Hernández-Gómez, J.A. Méndez-Bermúdez, J.M. Rodríguez, and J.M. Sigarreta, Harmonic index and harmonic polynomial on graph operations, Symmetry 10 (2018), no. 10, Article ID: 456.
https://doi.org/10.3390/sym10100456
[15] A. Ilić, Note on the harmonic index of a graph, Ars Combin. 128 (2016), 295–299.
[16] M.A. Iranmanesh and M. Saheli, On the harmonic index and harmonic polynomial of caterpillars with diameter four, Iranian J. Math. Chem. 6 (2015), no. 1, 41–49.
https://doi.org/10.22052/ijmc.2015.9044
[17] X. Li, I. Gutman, and M. Randić, Mathematical aspects of Randić-type molecular structure descriptors, Univ. Kragujevac, Kragujevac, 2006.
[18] X. Li and Y. Shi, A survey on the Randić index, MATCH Commun. Math. Comput. Chem. 59 (2008), no. 1, 127–156.
[19] M. Liu, A simple approach to order the first Zagreb indices of connected graphs, MATCH Commun. Math. Comput. Chem. 63 (2010), no. 2, 425–432.
[21] J.A. Rodríguez and J.M. Sigarreta, On the Randić index and conditional parameters of a graph, MATCH Commun. Math. Comput. Chem. 54 (2005), no. 2, 403–416.
[22] J.M. Rodríguez and J.M. Sigarreta, New results on the harmonic index and its generalizations, MATCH Commun. Math. Comput. Chem. 78 (2017), no. 2, 387–404.
[23] J.A. Rodríguez-Velázquez and J. Tomás-Andreu, On the Randić index of polymeric networks modelled by generalized Sierpinski graphs, MATCH Commun. Math. Comput. Chem. 74 (2015), no. 1, 145–160.
[24] Y. Shi, M. Dehmer, W. Li, and I. Gutman (eds.), Graph polynomials, series: Discrete mathematics and its applications, Chapman and Hall/CRC, Taylor and Francis Group, Boca Raton, Florida, U.S.A, 2017.
[27] R. Wu, Z. Tang, and H. Deng, A lower bound for the harmonic index of a graph with minimum degree at least two, Filomat 27 (2013), no. 1, 51–55.
https://doi.org/10.2298/FIL1301051W
[28] X. Xu, Relationships between harmonic index and other topological indices, Appl. Math. Sci. 6 (2012), no. 41, 2013–2018.
[29] S. Zafar, R. Nazir, M.S. Sardar, and Z. Zahid, Edge version of harmonic index and harmonic polynomial of some classes of graphs., J. Appl. Math. Inform. 34 (2016), no. 5-6, 479–486.
http://doi.org/10.14317/jami.2016.479
[30] L. Zhong and K. Xu, Inequalities between vertex-degree-based topological indices, MATCH Commun. Math. Comput. Chem. 71 (2014), no. 3, 627–642.