[3] M. Chellali, N. Jafari Rad, S.M. Sheikholeslami, and L. Volkmann, Roman domination in graphs, Topics in Domination in Graphs (T.W. Haynes, S.T. Hedetniemi, and M.A. Henning, eds.), Springer, Berlin/Heidelberg, 2020, p. 365–409.
[5] M. Chellali, N. Jafari Rad, S.M. Sheikholeslami, and L. Volkmann, Varieties of Roman domination, Structures of
Domination in Graphs (T.W. Haynes, S.T. Hedetniemi, and M.A. Henning, eds.), Springer, Berlin/Heidelberg, 2021, p. 273–307.
[9] G. Hao, Z. Xie, S.M. Sheikholeslami, and M. Hajjari, Bounds on the total double Roman domination number of graphs, Discuss. Math. Graph Theory 43 (2023), no. 4, 1033–1061.
https://doi.org/10.7151/dmgt.2417
[10] S. Kosari, S. Babaei, J. Amjadi, M. Chellali, and S.M. Sheikholeslami, Bounds on quasi total double roman domination in graphs, (Submitted).
[11] S. Kosari, S. Babaei, J. Amjadi, M. Chellali, and S.M. Sheikholeslami, Quasi total double Roman domination in graphs, (Submitted).
[12] A.C. Martínez, J.C. Hernández-Gómez, and J.M. Sigarreta, On the quasi-total Roman domination number of graphs, Mathematics 9 (2021), no. 21, Article number 2823.
https://doi.org/10.3390/math9212823