Research Article

On zero-divisor graph of the ring $\mathbb{F}_p + u \mathbb{F}_p + u^2 \mathbb{F}_p$

N. Annamalai

Department of Basic Engineering, Lecturer in Mathematics, Government Polytechnic College, Sankarapuram, Kallakurichi-606401, Tamil Nadu, India algebra.annamalai@gmail.com

> Received: 10 January 2023; Accepted: 5 October 2023 Published Online: 15 October 2023

Abstract: In this article, we discussed the zero-divisor graph of a commutative ring with identity $\mathbb{F}_p + u\mathbb{F}_p + u^2\mathbb{F}_p$ where $u^3 = 0$ and p is an odd prime. We find the clique number, chromatic number, vertex connectivity, edge connectivity, diameter and girth of a zero-divisor graph associated with the ring. We find some of topological indices and the main parameters of the code derived from the incidence matrix of the zerodivisor graph $\Gamma(R)$. Also, we find the eigenvalues, energy and spectral radius of both adjacency and Laplacian matrices of $\Gamma(R)$.

Keywords: zero-divisor graph, Laplacian matrix, spectral radius.

AMS Subject classification: 05C09, 05C40, 05C50

1. Introduction

The zero-divisor graph has attracted a lot of attention in the last few years. In 1988, Beck $[6]$ introduced the zero-divisor graph. He included the additive identity of a ring R in the definition and was mainly interested in the coloring of commutative rings. Let Γ be a simple graph whose vertices are the set of zero-divisors of the ring R, and two distinct vertices are adjacent if the product is zero. Later it was modified by Anderson and Livingston [\[1\]](#page-11-1). They redefined the definition as a simple graph that only considers the non-zero zero-divisors of a commutative ring R.

Let R be a commutative ring with identity and $Z(R)$ be the set of zero-divisors of R. The zero-divisor graph $\Gamma(R)$ of a ring R is an undirected graph whose vertices are the non-zero zero-divisors of R with two distinct vertices x and y are adjacent if and only if $xy = 0$. In this article, we consider the zero-divisor graph $\Gamma(R)$ as a graph with vertex set $Z^*(R)$ the set of non-zero zero-divisors of the ring R. Many researchers are doing research in this area $[9, 11, 13, 14]$ $[9, 11, 13, 14]$ $[9, 11, 13, 14]$ $[9, 11, 13, 14]$ $[9, 11, 13, 14]$ $[9, 11, 13, 14]$.

 c 2025 Azarbaijan Shahid Madani University Let $\Gamma = (V, E)$ be a simple undirected graph with vertex set V, edge set E. The incidence matrix of a graph Γ is a $|V| \times |E|$ matrix $Q(\Gamma)$ whose rows are labelled by

the vertices and columns by the edges and entries $q_{ij} = 1$ if the vertex labelled by row *i* is incident with the edge labelled by column *j* and $q_{ij} = 0$ otherwise.

The adjacency matrix $A(\Gamma)$ of the graph Γ , is the $|V| \times |V|$ matrix defined as follows. The rows and the columns of $A(\Gamma)$ are indexed by V. If $i \neq j$ then the (i, j) -entry of $A(\Gamma)$ is 0 for vertices i and j which are nonadjacent, and the (i, j) -entry is 1 for i and j which are adjacent. The (i, i) -entry of $A(\Gamma)$ is 0 for $i = 1, \ldots, |V|$. For any graph Γ, the energy of the graph is defined as

$$
\varepsilon(\Gamma) = \sum_{i=1}^{|V|} |\lambda_i|,
$$

where $\lambda_1, \ldots, \lambda_{|V|}$ are the eigenvalues of $A(\Gamma)$ of Γ .

The Laplacian matrix $L(\Gamma)$ of Γ is the $|V| \times |V|$ matrix defined as follows. The rows and columns of $L(\Gamma)$ are indexed by V. If $i \neq j$ then the (i, j) -entry of $L(\Gamma)$ is 0 if vertex i and j are not adjacent, and it is -1 if i and j are adjacent. The (i, i) -entry of $L(\Gamma)$ is d_i , the degree of the vertex $i, i = 1, 2, \ldots, |V|$. Let $D(\Gamma)$ be the diagonal matrix of vertex degrees. If $A(\Gamma)$ is the adjacency matrix of Γ , then note that $L(\Gamma) = D(\Gamma) - A(\Gamma)$. Let $\mu_1, \mu_2, \dots, \mu_{|V|}$ are eigenvalues of $L(\Gamma)$. Then the Laplacian energy $LE(\Gamma)$ is given by

$$
LE(\Gamma) = \sum_{i=1}^{|V|} \left| \mu_i - \frac{2|E|}{|V|} \right|.
$$

Lemma 1. [\[5\]](#page-11-4) Let $\Gamma = (V, E)$ be a graph, and let $0 = \mu_1 \leq \mu_2 \leq \cdots \leq \mu_{|V|}$ be the eigenvalues of its Laplacian matrix $L(\Gamma)$. Then, $\mu_2 > 0$ if and only if Γ is connected.

The Wiener index of a connected graph Γ is defined as the sum of distances between each pair of vertices, i.e.,

$$
W(\Gamma) = \sum_{\substack{a,b \in V \\ a \neq b}} d(a,b),
$$

where $d(a, b)$ is the length of shortest path joining a and b.

The degree of $v \in V$, denoted by d_v , is the number of vertices adjacent to v. The Randić index (also known under the name connectivity index) is a much investigated degree-based topological index. It was invented in 1976 by Milan Randić $[12]$ and is defined as

$$
R(\Gamma) = \sum_{(a,b) \in E} \frac{1}{\sqrt{d_a d_b}}
$$

with summation going over all pairs of adjacent vertices of the graph.

The Zagreb indices were introduced more than 50 years ago by Gutman and Trina-jestić [\[8\]](#page-11-6). For a graph Γ, the first Zagreb index $M_1(\Gamma)$ and the second Zagreb index $M_2(\Gamma)$ are, respectively, defined as follows:

$$
M_1(\Gamma) = \sum_{a \in V} d_a^2
$$

$$
M_2(\Gamma) = \sum_{(a,b) \in E} d_a d_b.
$$

An edge-cut of a connected graph Γ is the set $S \subseteq E$ such that $\Gamma - S = (V, E - S)$ is disconnected. The edge-connectivity $\lambda(\Gamma)$ is the minimum cardinality of an edge-cut. The minimum k for which there exists a k -vertex cut is called the vertex connectivity or simply the connectivity of Γ it is denoted by $\kappa(\Gamma)$.

For any connected graph Γ, we have $\lambda(\Gamma) \leq \delta(\Gamma)$ where $\delta(\Gamma)$ is minimum degree of the graph Γ.

The chromatic number of a graph Γ is the minimum number of colors needed to color the vertices of Γ so that adjacent vertices of Γ receive distinct colors and is denoted by $\chi(\Gamma)$. A clique of a graph Γ is a complete subgraph of Γ . The clique number $\omega(\Gamma)$ of a graph Γ is the number of vertices in a maximum clique of Γ . Note that for any graph Γ , $\omega(\Gamma) \leq \chi(\Gamma)$. The girth of an undirected graph is the length of a shortest cycle contained in the graph.

Beck [\[6\]](#page-11-0) conjectured that if R is a finite chromatic ring, then $\omega(\Gamma(R)) = \chi(\Gamma(R))$ where $\omega(\Gamma(R)), \chi(\Gamma(R))$ are the clique number and the chromatic number of $\Gamma(R)$, respectively. He also verified that the conjecture is true for several examples of rings. Anderson and Naseer, in [\[1\]](#page-11-1), disproved the above conjecture with a counterexample. $\omega(\Gamma(R))$ and $\chi(\Gamma(R))$ of the zero-divisor graph associated to the ring $\mathbb{F}_p + u\mathbb{F}_p + u^2\mathbb{F}_p$ are same. For basic graph theory, one can refer [\[4,](#page-11-7) [5\]](#page-11-4).

Let \mathbb{F}_q be a finite field with q elements. Let $x = (x_1, \ldots, x_n) \in \mathbb{F}_q^n$, then the Hamming weight $w_H(x)$ of x is defined by the number of non-zero coordinates in x. Let $x =$ $(x_1, \ldots, x_n), y = (y_1, \ldots, y_n) \in \mathbb{F}_q^n$, the Hamming distance $d_H(x, y)$ between x and y is defined by the number of coordinates in which they differ.

A q-ary code of length n is a non-empty subset C of \mathbb{F}_q^n . If C is a subspace of \mathbb{F}_q^n , then C is called a q -ary linear code of length n . An element of C is called a *codeword*. The minimum Hamming distance of a code C is defined by

$$
d_H(C) = \min\{d_H(c_1, c_2) \mid c_1 \neq c_2, c_1, c_2 \in C\}.
$$

The minimum weight $w_H(C)$ of a code C is the smallest among all weights of the non-zero codewords of C. For q-ary linear code, we have $d_H(C) = w_H(C)$. For basic coding theory, we refer [\[10\]](#page-11-8).

A linear code of length n, dimension k and minimum distance d is denoted by $[n, k, d]_q$. The code generated by the rows of the incidence matrix $Q(\Gamma)$ of the graph Γ is denoted by $C_p(\Gamma)$ over the finite field \mathbb{F}_p .

Theorem 1. $|7|$

- 1. Let $\Gamma = (V, E)$ be a connected graph and let G be a $|V| \times |E|$ incidence matrix for Γ . Then, the main parameters of the code $C_2(G)$ is $[|E|, |V| - 1, \lambda(\Gamma)]_2$.
- 2. Let $\Gamma = (V, E)$ be a connected bipartite graph and let G be a $|V| \times |E|$ incidence matrix for Γ. Then the incidence matrix generates $[[E], [V] - 1, \lambda(\Gamma)]_p$ code for odd prime p.

Codes from the row span of incidence matrix or adjacency matrix of various graphs are studied in [\[2,](#page-11-10) [3,](#page-11-11) [7,](#page-11-9) [15,](#page-12-2) [16\]](#page-12-3).

Let p be an odd prime. The ring $\mathbb{F}_p + u\mathbb{F}_p + u^2\mathbb{F}_p$ is defined as a characteristic p ring subject to restrictions $u^3 = 0$. The ring isomorphism $\mathbb{F}_p + u\mathbb{F}_p + u^2\mathbb{F}_p \cong \frac{\mathbb{F}_p[x]}{(x^3)}$ $\frac{\binom{r_p[x]}{\binom{n}{3}}}{s}$ obvious to see. An element $a + ub + u^2c \in R$ is unit if and only if $a \neq 0$.

Throughout this article, we denote the ring $\mathbb{F}_p + u\mathbb{F}_p + u^2\mathbb{F}_p$ by R. In this article, we discussed the zero-divisor graph of a commutative ring with identity $\mathbb{F}_p + u\mathbb{F}_p + u^2\mathbb{F}_p$ where $u^3 = 0$ and we find the clique number, chromatic number, vertex connectivity, edge connectivity, diameter, and girth of the graph $\Gamma(R)$, in Section 2. In Section 3, we find some of topological indices of $\Gamma(R)$. In Section 4, we find the main parameters of the code derived from incidence matrix of the zero-divisor graph $\Gamma(R)$. Finally, We find the eigenvalues, energy and spectral radius of both adjacency and Laplacian matrices in Section 5.

2. Zero-divisor graph $\Gamma(R)$ of the ring R

In this section, we discuss the zero-divisor graph $\Gamma(R)$ of the ring R and we find the clique number, chromatic number, vertex connectivity, edge connectivity, diameter, and girth of the graph $\Gamma(R)$.

Let $A_u = \{xu \mid x \in \mathbb{F}_p^*\}, A_{u^2} = \{xu^2 \mid x \in \mathbb{F}_p^*\}$ and $A_{u+u^2} = \{xu + yu^2 \mid x, y \in \mathbb{F}_p^*\}.$ Then $|A_u| = (p-1)$, $|A_{u^2}| = (p-1)$ and $|A_{u+u^2}| = (p-1)^2$. Therefore, $Z^*(R) = A_u \cup$ $A_{u^2} \cup A_{u+u^2}$ and $|Z^*(R)| = |A_u| + |A_{u^2}| + |A_{u+u^2}| = (p-1) + (p-1) + (p-1)^2 = p^2 - 1.$ As $u^3 = 0$, every vertices of A_u is adjacent with every vertices of A_{u^2} , every vertices

Figure 1. Zero-divisor graph of $R = \mathbb{F}_p + u\mathbb{F}_p + u^2\mathbb{F}_p$

of A_{u^2} is adjacent with every vertices of A_{u+u^2} and any two distinct vertices of A_{u^2} are adjacent. From the diagram, the graph $\Gamma(R)$ is connected with $p^2 - 1$ vertices and $(p-1)^2 + (p-1)^3 + \frac{(p-1)(p-2)}{2} = \frac{1}{2}(2p^3 - 3p^2 - p + 2)$ edges.

Example 1. For $p = 3$, $R = \mathbb{F}_3 + u\mathbb{F}_3 + u^2\mathbb{F}_3$. Then $A_u = \{u, 2u\}$, $A_{u^2} = \{u^2, 2u^2\}$, $A_{u+u^2} = \{u + u^2, 2u + 2u^2, u + 2u^2, 2u + u^2\}$. The number of vertices is 8 and the number of edges is 13.

Figure 2. Zero-divisor graph of $R = \mathbb{F}_3 + u\mathbb{F}_3 + u^2\mathbb{F}_3$

Theorem 2. The diameter of the zero-divisor graph diam($\Gamma(R)$) = 2.

Proof. From the Figure 1, we can see that the distance between any two distinct vertices are either 1 or 2. Therefore, the maximum of distance between any two distinct vertices is 2. Hence, $diam(\Gamma(R)) = 2$. \Box

Theorem 3. The clique number $\omega(\Gamma(R))$ of $\Gamma(R)$ is p.

Proof. From the Figure 1, A_{u^2} is a complete subgraph(clique) in $\Gamma(R)$. If we add exactly one vertex v from either A_u or A_{u+u^2} , then resulting subgraph form a complete subgraph(clique). Then $A_{u^2} \cup \{v\}$ forms a complete subgraph with maximum vertices. Therefore, the clique number of $\Gamma(R)$ is $\omega(\Gamma(R)) = |A_{u^2} \cup \{v\}| = p - 1 + 1 = p$. \Box

Theorem 4. The chromatic number $\chi(\Gamma(R))$ of $\Gamma(R)$ is p.

Proof. Since A_{u^2} is a complete subgraph with $p-1$ vertices in $\Gamma(R)$, then at least $p-1$ different colors needed to color the vertices of A_{u^2} . And no two vertices in A_u are adjacent then one color different from previous $p-1$ colors is enough to color all vertices in A_u . We take the same color in A_u to color vertices of A_{u+u^2} as there is no direct edge between A_u and A_{u+u^2} . Therefore, minimum p different colors required for proper coloring. Hence, the chromatic number $\chi(\Gamma(R))$ is p. \Box

The above two theorems show that the clique number and the chromatic number of our graph are same.

Theorem 5. The girth of the graph $\Gamma(R)$ is 3.

Proof. Since $p \geq 3$, we have $\Gamma(R)$ contains a cycle of length 3. Hence, the result follows from the definition of girth. \Box

Theorem 6. The vertex connectivity $\kappa(\Gamma(R))$ of $\Gamma(R)$ is $p-1$.

Proof. As the minimum degree $\delta(\Gamma(R))$ of $\Gamma(R)$ is $p-1$, $\kappa(\Gamma(R)) \leq \delta(\Gamma(R)) = p-1$. Note that, every vertex of $A_u \cup A_{u+u^2}$ is adjacent to every vertex of A_{u^2} . Hence there is no vertex cut of cardinality $p - 2$ and therefore the result follows. \Box

Theorem 7. The edge connectivity $\lambda(\Gamma(R))$ of $\Gamma(R)$ is $p-1$.

Proof. As $\Gamma(R)$ connected graph, $\kappa(\Gamma(R)) \leq \lambda(\Gamma(R)) \leq \delta(\Gamma(R))$. Since $\kappa(\Gamma(R)) =$ $p-1$ and $\delta(\Gamma(R)) = p-1$, then $\lambda(\Gamma(R)) = p-1$. \Box

3. Some Topological Indices of $\Gamma(R)$

In this section, we find the Wiener index, first Zagreb index, second Zagreb index and Randić index of the zero divisor graph $\Gamma(R)$.

Theorem 8. The Wiener index of the zero-divisor graph $\Gamma(R)$ of R is $W(\Gamma(R)) =$ $\frac{p(2p^3-2p^2-7p+5)}{2}$.

Proof. Consider,

$$
W(\Gamma(R)) = \sum_{\substack{x,y \in Z^* (R) \\ x \neq y}} d(x,y)
$$

\n
$$
= \sum_{\substack{x,y \in A_u \\ x \neq y}} d(x,y) + \sum_{\substack{x,y \in A_u \\ x \neq y}} d(x,y) + \sum_{\substack{x,y \in A_u \\ x \neq y}} d(x,y) + \sum_{\substack{x,y \in A_u \\ x \neq y}} d(x,y)
$$

\n
$$
+ \sum_{\substack{x \in A_u \\ y \in A_{u^2}}} d(x,y) + \sum_{\substack{x \in A_u \\ y \in A_{u+u^2}}} d(x,y) + \sum_{\substack{x \in A_u \\ y \in A_{u+u^2}}} d(x,y)
$$

\n
$$
= (p-1)(p-2) + \frac{(p-1)(p-2)}{2} + p(p-2)(p-1)^2
$$

\n
$$
+ (p-1)^2 + 2(p-1)^3 + (p-1)^3
$$

$$
= (p-1)^2 + 3(p-1)^3 + \frac{(p-1)(p-2)}{2} + (p-1)(p-2)(p^2 - p + 1)
$$

=
$$
\frac{p(2p^3 - 2p^2 - 7p + 5)}{2}.
$$

Denote [A, B] be the set of edges between the subset A and B of V. For any $a \in A_u$, $d_a = p - 1$, for any $a \in A_{u^2}$, $d_a = p^2 - 2$ and any $a \in A_{u+u^2}$, $d_a = p - 1$.

Theorem 9. The Randić index of the zero-divisor graph $\Gamma(R)$ of R is

$$
R(\Gamma(R)) = \frac{(p-1)}{2(p^2-2)} \left[2p\sqrt{(p-1)(p^2-2)} + (p-2) \right].
$$

Proof. Consider,

$$
R(\Gamma(R)) = \sum_{(a,b)\in E} \frac{1}{\sqrt{d_a d_b}}
$$

\n
$$
= \sum_{(a,b)\in [A_u, A_{u^2}]} \frac{1}{\sqrt{d_a d_b}} + \sum_{(a,b)\in [A_{u^2}, A_{u^2}]} \frac{1}{\sqrt{d_a d_b}} + \sum_{(a,b)\in [A_{u^2}, A_{u+u^2}]} \frac{1}{\sqrt{d_a d_b}}
$$

\n
$$
= (p-1)^2 \frac{1}{\sqrt{(p-1)(p^2-2)}} + \frac{(p-1)(p-2)}{2} \frac{1}{\sqrt{(p^2-2)(p^2-2)}}
$$

\n
$$
+ (p-1)^3 \frac{1}{\sqrt{(p^2-2)(p-1)}}
$$

\n
$$
= \frac{(p-1)^2}{\sqrt{(p-1)(p-2)}} [p(p-1)] + \frac{(p-1)(p-2)}{2(p^2-2)}
$$

\n
$$
= \frac{p(p-1)^2}{\sqrt{(p-1)(p^2-2)}} + \frac{(p-1)(p-2)}{2(p^2-2)}
$$

\n
$$
= \frac{(p-1)}{2(p^2-2)} [2p\sqrt{(p-1)(p^2-2)} + (p-2)]
$$

Theorem 10. The first Zagreb index of the zero-divisor graph $\Gamma(R)$ of R is $M_1(\Gamma(R)) =$ $(p-1)[p^4+p^3-4p^2+p+4].$

Proof. Consider,

$$
M_1(\Gamma(R)) = \sum_{a \in Z^*(R)} d_a^2
$$

= $\sum_{a \in A_u} d_a^2 + \sum_{a \in A_{u2}} d_a^2 + \sum_{a \in A_{u+u2}} d_a^2$
= $(p-1)(p-1)^2 + (p-1)(p^2-2)^2 + (p-1)^2(p-1)^2$
= $(p-1)^3 + (p-1)^4 + (p^2-2)^2(p-1)$
= $p(p-1)^3 + (p-1)(p^2-2)$
= $(p-1)[p^4 + p^3 - 4p^2 + p + 4].$

 \Box

 \Box

 \Box

Theorem 11. The second Zagreb index of the zero-divisor graph $\Gamma(R)$ of R is

$$
M_2(\Gamma(R)) = \frac{1}{2} [3p^6 - 9p^5 + 22p^3 - 16p^2 - 8p + 8].
$$

Proof. Consider,

$$
M_2(\Gamma(R)) = \sum_{(a,b)\in E} d_a d_b
$$

=
$$
\sum_{(a,b)\in[A_u, A_{u^2}]} d_a d_b + \sum_{(a,b)\in[A_{u^2}, A_{u^2}]} d_a d_b + \sum_{(a,b)\in[A_{u^2}, A_{u+u^2}]} d_a d_b
$$

=
$$
(p-1)^2 (p-1)(p^2-2) + \frac{(p-1)(p-2)}{2} (p^2-2)(p^2-2)
$$

$$
+ (p-1)^3 (p^2-2)(p-1)
$$

=
$$
\frac{(p-1)(p^2-2)}{2} [3p^3 - 6p^2 + 4]
$$

=
$$
\frac{1}{2} [3p^6 - 9p^5 + 22p^3 - 16p^2 - 8p + 8].
$$

 \Box

.

4. Codes from Incidence Matrix of $\Gamma(R)$

In this section, we find the incidence matrix of the graph $\Gamma(R)$ and we find the parameters of the linear code generated by the rows of incidence matrix $Q(\Gamma(R))$. The incidence matrix $Q(\Gamma(R))$ is given below

$$
Q(\Gamma(R)) = A_u \begin{pmatrix} [A_u, A_u] & [A_{u^2}, A_{u^2}] & [A_{u^2}, A_{u+u^2}] \\ 0 & (p-1)\times (p-1)^2 & 0 \\ J(p-1)\times (p-1)^2 & J(p-1)(p-2) & J(p-1)\times (p-1)^3 \\ 0 & 0 & 0 \\ 0 & (p-1)^2 \times (p-1)^2 & 0 \\ 0 & (p-1)^2 \times (p-1)^2 & 0 \end{pmatrix},
$$

where J is a all one matrix, **0** is a zero matrix with appropriate order, $\mathbf{1}_{(p-1)}$ is a all λ

one
$$
1 \times (p-1)
$$
 row vector and $D_{k \times l}^{(p-1)} = \begin{pmatrix} 1_{(p-1)} & \mathbf{0} & \mathbf{0} & \dots & \mathbf{0} \\ \mathbf{0} & \mathbf{1}_{(p-1)} & \mathbf{0} & \dots & \mathbf{0} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \dots & \mathbf{1}_{(p-1)} \end{pmatrix}_{k \times l}.$

Example 2. The incidence matrix of the zero-divisor graph $\Gamma(R)$ given in the Example [1](#page-4-0) is

$$
Q(\Gamma(R)) = \begin{pmatrix} 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 2u & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ u^2 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ \hline 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\ 2u + 2u^2 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\ 2u + u^2 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\ u + 2u^2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \end{pmatrix}_{8 \times 13}
$$

The number of linearly independent rows is 7 and hence the rank of the matrix $Q(\Gamma(R))$ is 7. The rows of the incidence matrix $Q(\Gamma(R))$ is generate a $[n = 13, k = 7, d = 2]_2$ code over \mathbb{F}_2 .

The edge connectivity of the zero-divisor graph $\Gamma(R)$ is $p-1$, then we have the following theorem:

Theorem 12. The linear code generated by the incidence matrix $Q(\Gamma(R))$ of the zerodivisor graph $\Gamma(R)$ is a $C_2(\Gamma(R)) = [\frac{1}{2}(2p^3 - 3p^2 - p + 2), p^2 - 2, p - 1]_2$ linear code over the finite field \mathbb{F}_2 .

5. Adjacency and Laplacian Matrices of $\Gamma(R)$

In this section, we find the eigenvalues, energy and spectral radius of both adjacency and Laplacian matrices of $\Gamma(R)$.

If μ is an eigenvalue of matrix A then $\mu^{(k)}$ means that μ is an eigenvalue with multiplicity k.

The vertex set partition into A_u , A_{u^2} and A_{u+u^2} of cardinality $p-1$, $p-1$ and $(p-1)^2$, respectively. Then the adjacency matrix of $\Gamma(R)$ is

$$
A_u \t A_{u^2} \t A_{u+u^2}
$$

\n
$$
A(\Gamma(R)) = A_{u^2} \t \begin{pmatrix} \mathbf{0}_{p-1} & J_{p-1} & \mathbf{0}_{(p-1)\times(p-1)^2} \\ J_{p-1} & J_{p-1} - I_{p-1} & J_{(p-1)\times(p-1)^2} \\ \mathbf{0}_{(p-1)^2 \times (p-1)} & J_{(p-1)^2 \times (p-1)} & \mathbf{0}_{(p-1)^2} \end{pmatrix},
$$

where J_k is an $k \times k$ all one matrix, $J_{n \times m}$ is an $n \times m$ all matrix, $\mathbf{0}_k$ is an $k \times k$ zero matrix, $\mathbf{0}_{n \times m}$ is an $n \times m$ zero matrix and I_k is an $k \times k$ identity matrix.

All the rows in A_{u^2} are linearly independent and all the rows in A_u and A_{u+u^2} are linearly dependent. Therefore, $p - 1 + 1 = p$ rows are linearly independent. So, the rank of $A(\Gamma(R))$ is p. By Rank-Nullity theorem, nullity of $A(\Gamma(R)) = p^2 - p - 1$. Hence, zero is an eigenvalue with multiplicity $p^2 - p - 1$. For $p = 3$, the adjacency matrix of $\Gamma(R)$ is

$$
A(\Gamma(R)) = \begin{pmatrix} 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ \hline 1 & 1 & 0 & 1 & 1 & 1 & 1 & 1 \\ \hline 1 & 1 & 1 & 0 & 1 & 1 & 1 & 1 \\ \hline 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \end{pmatrix}_{8 \times}
$$

The eigenvalues of $A(\Gamma(R))$ are $0^{(5)}$, $4^{(1)}$, $(-1)^{(1)}$ and $(-3)^{(1)}$. For $p=5$, the eigenvalues of $A(\Gamma(R))$ are $0^{(19)}$, $10^{(1)}$, $(-1)^{(3)}$ and $(-7)^{(1)}$.

8×8

.

Theorem 13. The energy of the adjacency matrix $A(\Gamma(R))$ is $\varepsilon(\Gamma(R)) = 6p - 10$.

.

Proof. For any odd prime p, the eigenvalues of $A(\Gamma(R))$ are $0^{(p^2-p-1)}$, $(3p-5)^{(1)}$, $(-1)^{(p-2)}$, $(3-2p)^{(1)}$. The energy of adjacency matrix $A(\Gamma(R))$ is the sum of the absolute values of all eigenvalues of $A(\Gamma(R))$. That is,

$$
\varepsilon(\Gamma(R)) = \sum_{i=1}^{p^2 - 1} |\lambda_i| \quad \text{where } \lambda_i\text{'s are eigenvalues of } A(\Gamma(R))
$$

$$
= |3p - 5| + (p - 2)| - 1| + |3 - 2p|
$$

$$
= 3p - 5 + p - 2 + 2p - 3 \quad \text{since } p > 2
$$

$$
= 6p - 10.
$$

The degree matrix of the graph $\Gamma(R)$ is

$$
A_u \qquad A_{u^2} \qquad A_{u+u^2}
$$

\n
$$
D(\Gamma(R)) = A_{u^2} \qquad \begin{pmatrix} (p-1)I_{p-1} & 0_{p-1} & 0_{(p-1)\times (p-1)^2} \\ 0_{p-1} & (p^2-2)I_{p-1} & 0_{(p-1)\times (p-1)^2} \\ 0_{(p-1)^2 \times (p-1)} & 0_{(p-1)^2 \times (p-1)} & (p-1)I_{(p-1)^2} \end{pmatrix}.
$$

The Laplacian matrix $L(\Gamma(R))$ of $\Gamma(R)$ is defined by $L(\Gamma(R)) = D(\Gamma(R)) - A(\Gamma(R))$. Therefore,

$$
A_u \t A_{u^2} \t A_{u+u^2}
$$

\n
$$
L(\Gamma(R)) = A_{u^2} \t \begin{pmatrix} (p-1)I_{p-1} & -J_{p-1} & \mathbf{0}_{(p-1)\times(p-1)^2} \\ -J_{p-1} & (p^2-1)I_{p-1} - J_{p-1} & -J_{(p-1)\times(p-1)^2} \\ \mathbf{0}_{(p-1)^2 \times (p-1)} & -J_{(p-1)^2 \times (p-1)} & (p-1)I_{(p-1)^2} \end{pmatrix}.
$$

Since each row sum is zero, zero is one of the eigenvalues of $L(\Gamma(R))$. By Lemma [1,](#page-4-0) the second smallest eigenvalue of $L(\Gamma(R))$ is positive as $\Gamma(R)$ is connected. Hence zero is an eigenvalue with multiplicity one, and all other eigenvalues are positive. For $p = 3$, the Laplacian matrix is

$$
L(\Gamma(R)) = \begin{pmatrix} 2 & 0 & -1 & -1 & 0 & 0 & 0 & 0 \\ 0 & 2 & -1 & -1 & 0 & 0 & 0 & 0 \\ -1 & -1 & 7 & -1 & -1 & -1 & -1 & -1 \\ -1 & -1 & -1 & 7 & -1 & -1 & -1 & -1 \\ 0 & 0 & -1 & -1 & 2 & 0 & 0 & 0 \\ 0 & 0 & -1 & -1 & 0 & 2 & 0 & 0 \\ 0 & 0 & -1 & -1 & 0 & 0 & 2 & 0 \\ 0 & 0 & -1 & -1 & 0 & 0 & 0 & 2 \end{pmatrix}_{8 \times 8}
$$

The eigenvalues of $L(\Gamma(R))$ are $0^{(1)}, 8^{(2)}, 2^{(5)}$. For $p = 5$, the eigenvalues of $L(\Gamma(R))$ are $0^{(1)}, 24^{(4)}, 4^{(19)}$. For any prime p, the eigenvalues of $L(\Gamma(R))$ are $0^{(1)}$, $(p^2-1)^{(p-1)}$, $(p-1)^{(p^2-p-1)}$.

Theorem 14. The Laplacian energy of $\Gamma(R)$ is $LE(\Gamma(R)) = \frac{2p^5 - 6p^4 + 6p^3 - 4p + 1}{2}$ $\frac{p^2-1}{p^2-1}$.

 \Box

Proof. Let $|V| = n$ and $|E| = m$. Let $\mu_1, \mu_2, \ldots, \mu_n$ are eigenvalues of $L(\Gamma(R))$. Then the Laplacian energy $LE(\Gamma(R))$ is given by

$$
LE(\Gamma(R)) = \sum_{i=1}^{n} \left| \mu_i - \frac{2m}{n} \right|.
$$

We know that the eigenvalues of $L(\Gamma(R))$ are $0^{(1)}$, $(p^2-1)^{(p-1)}$, $(p-1)^{(p^2-p-1)}$. Then

$$
LE(\Gamma(R)) = \sum_{i=1}^{n} \left| \mu_i - \frac{2m}{n} \right|
$$

= $\sum_{i=1}^{n} \left| \mu_i - \frac{2p^3 - 3p^2 - p + 2}{p^2 - 1} \right|$
= $\left| 0 - \frac{2p^3 - 3p^2 - p + 2}{p^2 - 1} \right| + (p - 1) \left| (p^2 - 1) - \frac{2p^3 - 3p^2 - p + 2}{p^2 - 1} \right|$
+ $(p^2 - p - 1) \left| (p - 1) - \frac{2p^3 - 3p^2 - p + 2}{p^2 - 1} \right|$
= $\frac{2p^5 - 6p^4 + 6p^3 - 4p + 1}{p^2 - 1}$ since $p \ge 2$.

We denote by $\rho(\Gamma(R))$ the largest eigenvalue in absolute of $A(\Gamma(R))$ and call it the spectral radius of $\Gamma(R)$; we denote by $\mu(\Gamma(R))$ the largest eigenvalue in absolute of $L(\Gamma(R))$ and call it the Laplacian spectral radius of $\Gamma(R)$.

Theorem 15. For any odd prime p, $\rho(\Gamma(R)) = 3p - 5$ and $\mu(\Gamma(R)) = p^2 - 1$.

Proof. The eigenvalues of the adjacency matrix $A(\Gamma(R))$ are $0^{(p^2-p-1)}$, $(3p-5)^{(1)}$, $(-1)^{(p-2)}$ and $(3-2p)^{(1)}$. Then the largest eigenvalue in absolute is $3p-5$ as $p>2$. That is, $\rho(\Gamma(R)) = 3p - 5$.

The eigenvalues of the Laplacian matrix $L(\Gamma(R))$ are $0^{(1)}$, $(p^2-1)^{(p-1)}$ and $(p-1)$ 1)^(p²-p-1). Then the largest eigenvalue in absolute is $p^2 - 1$. That is, $\mu(\Gamma(R)) =$ $p^2-1.$ \Box

Conclusion

In this article, we discussed the zero-divisor graph of a commutative ring with identity $\mathbb{F}_p + u\mathbb{F}_p + u^2\mathbb{F}_p$ where $u^3 = 0$ and p is an odd prime. We find the clique number, chromatic number, vertex connectivity, edge connectivity, diameter and girth of a zero-divisor graph associated with the ring. We find some of topological indices and the main parameters of the code derived from the incidence matrix of the zerodivisor graph $\Gamma(R)$. Also, we find the eigenvalues, energy and spectral radius of both adjacency and Laplacian matrices of $\Gamma(R)$.

 \Box

Acknowledgements: The author thanks Satya Bagchi and C. Durairajan for their help to improving the presentation of the paper.

Conflict of Interest: The authors declare that they have no conflict of interest.

Data Availability: Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

- [1] D.F. Anderson, A. Frazier, A. Lauve, and P.S. Livingston, The zero-divisor graph of a commutative ring, II, Ideal theoretic methods in commutative algebra, CRC Press, 2019, pp. 61–72. http://dx.doi.org/10.1201/9780429187902-5.
- [2] N. Annamalai and C. Durairajan, Linear codes from incidence matrices of unit graphs, J. Inf. Optim. Sci. 42 (2021), no. 8, 1943–1950. https://doi.org/10.1080/02522667.2021.1972617.
- [3] $_____________________________\._$. Codes from the incidence matrices of a zero-divisor graphs, J. Discrete Math. Sci. Cryptogr. (2022), In press. https://doi.org/10.1080/09720529.2021.1939955.
- [4] R. Balakrishnan and K. Ranganathan, A Textbook of Graph Theory, Springer, New York, 2012.
- [5] R.B. Bapat, Graphs and Matrices, Springer, London, 2014.
- [6] I. Beck, Coloring of commutative rings, J. Algebra 116 (1988), no. 1, 208–226. https://doi.org/10.1016/0021-8693(88)90202-5.
- [7] P. Dankelmann, J.D. Key, and B.G. Rodrigues, Codes from incidence matrices of graphs, Designs, Codes and Cryptography 68 (2013), no. 1, 373–393. https://doi.org/10.1007/s10623–011-9594-x.
- [8] I. Gutman and N. Trinajstić, *Graph theory and molecular orbitals. total* φ *-electron* energy of alternant hydrocarbons, Chem. Phy. Lett. 17 (1972), no. 4, 535–538. https://doi.org/10.1016/0009-2614(72)85099-1.
- [9] T. Kavaskar, Beck's coloring of finite product of commutative ring with unity, Graphs Combin. 38 (2022), no. 2, 1–9. https://doi.org/10.1007/s00373-021-02401-x.
- [10] S. Ling and C. Xing, Coding Theory: A First Course, Cambridge University Press, Cambridge, 2004.
- [11] A. Mukhtar, R. Murtaza, S.U. Rehman, S. Usman, and A.Q. Baig, Computing the size of zero divisor graphs, J. Inf. Optim. Sci. 41 (2020), no. 4, 855–864. https://doi.org/10.1080/02522667.2020.1745378.
- [12] M. Randić, *On chracterization of molecular branching*, J. Am. Chem. Soc. 97, no. 23, 6609–6615.

https://doi.org/10.1021/ja00856a001.

- [13] B.S. Reddy, R.S. Jain, and N. Laxmikanth, Vertex and edge connectivity of the zero divisor graph $\gamma[\mathbb{Z}_n]$, Comm. Math. Appl. 11 (2020), no. 2, 253-258. https://doi.org/10.26713/cma.v11i2.1319.
- [14] S.P. Redmond, The zero-divisor graph of a non-commutative ring, Internat. J. Commut. Rings 1 (2002), no. 4, 203–211.
- [15] R. Saranya and C. Durairajan, Codes from incidence matrices of some regular graphs, Discrete Math. Algorithms Appl. 13 (2021), no. 4, Article ID: 2150035. https://doi.org/10.1142/S179383092150035X.
- $[16]$, Codes from incidence matrices of $(n, 1)$ -arrangement graphs and $(n, 2)$ arrangement graphs, J. Discrete Math. Sci. Cryptogr. 25 (2022), no. 2, 373–393. https://doi.org/10.1080/09720529.2019.1681674.