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Abstract: Let G be a finite group. The directed inclusion graph of cyclic subgroups

of G,
−→
Ic(G), is the digraph with vertices of all cyclic subgroups of G, and for two

distinct cyclic subgroups 〈a〉 and 〈b〉, there is an arc from 〈a〉 to 〈b〉 if and only if

〈b〉 ⊂ 〈a〉. The (undirected ) inclusion graph of cyclic subgroups of G, Ic(G), is the

underlying graph of
−→
Ic(G), that is, the vertex set is the set of all cyclic subgroups of

G and two distinct cyclic subgroups 〈a〉 and 〈b〉 are adjacent if and only if 〈a〉 ⊂ 〈b〉
or 〈b〉 ⊂ 〈a〉. In this paper, we first show that, if G and H are finite groups such

that Ic(G) ∼= Ic(H) and G is cyclic, then H is cyclic. We show that for two cyclic

groups G and H of orders pα1
1 . . . pαtt and qβ11 . . . qβss , respectively, Ic(G) ∼= Ic(H) if

and only if t = s and by a suitable σ, αi = βσ(i). Also for any cyclic groups G, H, if

Ic(G) ∼= Ic(H), then
−→
Ic(G) ∼=

−→
Ic(H). We also show that for two finite abelian groups G

and H, Ic(G) ∼= Ic(H) if and only if |π(G)| = |π(H)| and by a convenient permutation

the graph of their sylow subgroups are isomorphic. In this case, their directed inclusion

graphs are isomorphic too.
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1. Introduction

Graphs associated to groups have a long history. Cayley graphs are first such notion

introduced by Cayley. Power graph of a group was introduced by Kelarev and Quinn

in [10]. In [2, 3], Cameron and Ghosh obtained interesting results about power graphs

of finite groups. In recent years, the study of power graphs has been growing, see, for
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166 Finite Abelian groups with isomorphic inclusion graphs

example, [4, 5, 9, 11–13]. Also, see [1] for a survey of results and open problems on

power graphs. On the other hand, the concept of a power graph can be generalized

or modified in various ways, such as reduced power graphs [14] and quotient power

graphs [17].

Rajkumar and Anitha [14, 15] defined the reduced power graph of G, RP(G), is

a graph with vertex set G, and two vertices u and v are adjacent if and only if

u 6= v and 〈v〉 ⊂ 〈u〉 or 〈u〉 ⊂ 〈v〉, and they study some interplay between the

algebraic properties of a group and the graph theoretical properties of its (directed

and undirected) reduced power graphs.

Shaker and Iranmanesh [17] defined the quotient power graph of a group G as follows:

if P = (G,E) is a power graph and ∼ is a relation on G, in which for any x, y ∈ G,

x ∼ y if and only if 〈x〉 = 〈y〉, then the quotient power graph of G, P(G)/∼, denoted

by
∼
P (G), is a graph with vertex set [G] = G/∼ and edge set [E], in which two distinct

vertices [x] and [y] are adjacent if and only if there exists x′ ∈ [x] and y′ ∈ [y] such

that {x′, y′} ∈ E. In this paper they investigated some relationships between the

power and quotient power graphs of a finite group and fined some graph theoretical

properties of the quotient and proper quotient power graphs of a finite group G.

Also they classify those groups whose quotient ( proper quotient ) power graphs are

isomorphic to trees or paths.

Inspired by ideas from Shaker and Iranmanesh in [17], we study in [8] the inclusion

graph of cyclic subgroups of a group G as follows: if G is a finite group, the inclusion

graph of cyclic subgroups, Ic(G), is the (undirected) graph with vertices of all cyclic

subgroups of G, and two distinct cyclic subgroups 〈a〉 and 〈b〉, are adjacent if and

only if 〈a〉 ⊂ 〈b〉 or 〈b〉 ⊂ 〈a〉, and we classified all abelian groups whose inclusion

graph is planar. Also we studied planarity of this graph for finite groups G, where

|π(Z(G))| ≥ 2. We denote I∗c (G) = Ic(G)\{〈e〉}. Since Ic(G) ∼= Ic(H) if and only

if I∗c (G) ∼= I∗c (H), so throughout of this paper we use Ic(G) instead of I∗c (G). The

directed inclusion graph of cyclic subgroups of G,
−→
Ic(G), is the digraph with vertex

set of all non-trivial cyclic subgroups of G, and for two distinct cyclic subgroups 〈a〉
and 〈b〉, there is an arc from 〈a〉 to 〈b〉 if and only if 〈b〉 ⊂ 〈a〉.
In the first part of this paper, we provided some definitions and preliminaries which

are required. In the next part we show that, if G and H are finite groups such that

Ic(G) ∼= Ic(H) and G is cyclic, then H is cyclic too. We also show that for two

cyclic groups G, H of orders pα1
1 · · · p

αt
t and qβ1

1 · · · qβss , respectively, Ic(G) ∼= Ic(H)

if and only if t = s and by a suitable σ, αi = βσ(i). Also for any cyclic groups G and

H, if Ic(G) ∼= Ic(H), then
−→
Ic(G) ∼=

−→
Ic(H). In the last part, we show that for two

finite abelian groups G and H, Ic(G) ∼= Ic(H) if and only if |π(G)| = |π(H)| and by a

convenient permutation the graph of their sylow subgroups are isomorphic. Moreover,

for two abelian groups if their inclusion graph of cyclic subgroups are isomorphic, then

their directed inclusion graphs are isomorphic too.
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2. Definition and preliminaries

All groups and graphs in this paper are assumed to be finite. Throughout the paper by

a graph we mean a simple graph which has no multiple edges or loops. The following

notations are used in the rest of this paper.

Let Γ = (V,E) be any graph, and let X ⊆ V be any subset of vertices of Γ. The

induced subgraph Γ[X], is the graph whose vertex set is X and whose edge set consists

of all of the edges in E that have both endpoints in X. The non-empty graph Γ is

connected if it has a x, y-path whenever x, y ∈ V , otherwise Γ is disconnected. Also

we mean the null graph is a graph that has no edges. In other words, the graph Γ is

null, if |E| = 0. The Union of graphs Γ1 and Γ2, written Γ1 ∪ Γ2, is the graph with

vertex set V (Γ1) ∪ V (Γ2) and edge set E(Γ1) ∪ E(Γ2). The distance d(x, y) between

vertices x and y of a connected graph Γ is the length of a shortest path connecting

them, and we define d(x, x) = 0. Also, suppose A and B are two subsets of V , then

we define:

d(A,B) = min{d(x, y)
∣∣ x ∈ A , y ∈ B}.

A non-empty subset X ⊆ V is called a clique, if the induced subgraph on X is a

complete graph. The maximum size of a clique in Γ is called the clique number of Γ

and denoted by ω(Γ). The degree of a vertex x in a graph Γ, degΓ(x), is the number

of Γ incident to x. The maximum degree is ∆(Γ), the minimum degree is δ(Γ) and the

set of all neighbors of x in Γ is denoted by NΓ(x), or briefly by N(x). Furthermore,

N [x] = N(x) ∪ {x}. If Γ is a directed graph, we define, the set of input edges to x,

i(x) = {y ∈ V
∣∣ y → x} and the set of output edges of x, O(x) = {y ∈ V

∣∣ x→ y}.
Given a group G and a subset X of cyclic subgroups of G, we denote [X(G)] instead

of Ic(G)[X] and we shall write [X(G)]′ instead of I ′c(G)[X]. Also for vertex set and

edge set of Ic(G), we denote V (G) and E(G) instead of V (Ic(G)) and E(Ic(G)),

respectively. We also denote ω(G), ∆(G) and δ(G) instead of ω(Ic(G)), ∆(Ic(G))

and δ(Ic(G)), respectively. For 〈x〉∈V (G), i(〈x〉)={〈y〉∈V (G)|〈x〉⊂〈y〉} and O(〈x〉) =

{〈y〉 ∈ V (G)|〈y〉 ⊂ 〈x〉}.
The cyclic group of order n is denoted by Zn. A group G is called homocyclic if G

isomorphic to the direct product of cyclic groups, each of the same order. We also

denote by π(n) the set of the prime divisors of a positive integer n, and given a group

G, we shall write π(G) instead of π(|G|).
We begin with the following theorem, which will be used frequently in the sequel.

Theorem 1. Let
−→
Ic(G1)∼=

−→
Ic(G2),

−→
Ic(H1)∼=

−→
Ic(H2) and (|Gi|, |Hi|)=1, i∈{1, 2}. Then

−→
Ic(G1×H1)∼=

−→
Ic(G2×H2), and moreover Ic(G1×H1)∼=Ic(G2×H2).

Proof. Let
−→
Ic(G1) ∼=ϕ1

−→
Ic(G2) and

−→
Ic(H1) ∼=ϕ2

−→
Ic(H2). Since (|G1|, |H1|) = 1, any

cyclic subgroups of G1 ×H1 are in the form 〈a〉 × 〈b〉 where 〈a〉 ∈ V (G1) ∪ {〈eG1
〉}

and 〈b〉 ∈ V (H1) ∪ {〈eH1〉}. Also 〈a1〉 × 〈b1〉 ⊆ 〈a〉 × 〈b〉 if and only if 〈a1〉 ⊆
〈a〉 and 〈b1〉 ⊆ 〈b〉. Then the map ϕ :

−→
Ic(G1 × H1) −→

−→
Ic(G2 × H2) defined by
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ϕ(〈g〉×〈h〉) = ϕ1(〈g〉)×ϕ2(〈h〉), ϕ(〈eG1
〉×〈h〉) = 〈eG2

〉×ϕ2(〈h〉) and ϕ(〈g〉×〈eH1
〉) =

ϕ1(〈g〉)×〈eH2〉, for any non-trivial cyclic subgroups 〈g〉 ⊆ G1 and 〈h〉 ⊆ H1, is a graph

isomorphism, and then
−→
Ic(G1 ×H1) ∼=

−→
Ic(G2 ×H2).

Example 1. Let G1 = A1 × H and G2 = A2 × H, where A1 = Zp × Zp × Zp, A2 =
Zpn(Zp×Zp) andH be any finite group where (|H|, p) = 1 and p ≥ 3. Then Ic(G1) ∼= Ic(G2).

Proof. Clearly
−→
Ic(A1) ∼=

−→
Ic(A2) ∼= K ′p2+p+1. Since

−→
Ic(H) ∼=

−→
Ic(H), by Theorem 1,

Ic(G1) ∼= Ic(G2).

3. Cyclic Groups

Obviously if
−→
Ic(G) ∼=

−→
Ic(H), then Ic(G) ∼= Ic(H). In this section, we show that for

a cyclic group G, if Ic(G) ∼= Ic(H), then H is cyclic too and
−→
Ic(G) ∼=

−→
Ic(H).

Lemma 1. Let G be a group and |π(G)| ≥ 3. Then for any non-trivial subgroup 〈x〉 of
G, O(〈x〉)′ is connected if and only if |π(〈x〉)| ≥ 2 or |〈x〉| = p2, where p is a prime.

Proof. Assume |〈x〉| = pr11 · · · p
rt
t , t ≥ 2. One can see that, all subgroups of distinct

prime power orders are adjacent in O(〈x〉)′. Suppose 〈a〉 ∈ O(〈x〉) is not prime powers

and |〈a〉| = pγ11 · · · p
γt
t , where γj < rj , for some j. Then 〈a〉 and 〈b〉 are adjacent in

O(〈x〉)′, in which |〈b〉| = p
rj
j . Thus O(〈x〉)′ is connected.

Now suppose that |〈x〉| = pk, k ≥ 2. Then O(〈x〉) is complete graph of order k − 1.

Hence O(〈x〉)′ is connected if and only if O(〈x〉)′ = K1. Also if |〈x〉| = p, then

O(〈x〉)′ = ∅ and completes the proof.

Let I1(G) = Ic(G)\{G}. Clearly, OIc(G)(〈x〉) = OI1(G)(〈x〉) for any proper cyclic

subgroup 〈x〉 of G. Also if G is not cyclic, then Ic(G)=I1(G).

Since induced subgraph on O(〈x〉) and I1(〈x〉) are isomorphic and induced subgraph

on i(〈x〉) and Ic( G
〈x〉 ) are isomorphic, we have the following.

Lemma 2. Let G be a cyclic group and |π(G)| ≥ 3. Then for any proper non-trivial
subgroup 〈x〉 of G, iI1(G)(〈x〉)′ is connected if and only if |π( G

〈x〉 )|≥ 2 or | G〈x〉 | = p2, where p
is a prime.

Let G be a finite group and 〈x〉 ⊆ G. Then 〈x〉 is a prime-element, if the order of 〈x〉
is prime. Also, 〈x〉 is a maximal cyclic subgroup of G, if it is a maximal in the set of

all proper cyclic subgroups of G.

Remark 1. Let G be a cyclic group and 〈x〉 ⊆ G. Then OIc(G)(〈x〉) = ∅ or iIc(G)(〈x〉) = ∅
if and only if 〈x〉 is a prime-element or 〈x〉 = G.
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Corollary 1. Let G be a cyclic group, |π(G)| ≥ 3 and 〈x〉 ⊂ G. Then NI1(G)(〈x〉)′
= A∪B, where A is a connected component with at least one edge and B is null, if and only
if |〈x〉| or | G〈x〉 | is a positive prime power.

Proof. Let 〈x〉 be a subgroup of G and NI1(G)(〈x〉)′ is union of a connected compo-

nent with at least one edge and some points. Since there is no edge between vertex

set of O(〈x〉)′ and iI1(G)(〈x〉)′ in NI1(G)(〈x〉)′, NI1(G)(〈x〉)′= O(〈x〉)′∪ iI1(G)(〈x〉)′. If

|π(〈x〉)| ≥ 2 and |π( G
〈x〉 )| ≥ 2, then O(〈x〉)′ and iI1(G)(〈x〉)′ are connected components

with at least one edge, and so NI1(G)(〈x〉)′ have two connected components with at

least one edge, a contradiction. Since |π(G)| ≥ 3, |〈x〉| = pα and | G〈x〉 | = pα, α ≥ 1,

don’t happen together. Now, suppose |〈x〉| = pα, α ≥ 1. Hence O(〈x〉)′ = K ′α−1 and

by Lemma 2, iI1(G)(〈x〉)′ is a connected component with at least one edge. Also, if

| G〈x〉 | = pα, α ≥ 1, then iI1(G)(〈x〉)′ is null and by Lemma 1, O(〈x〉)′ is a connected

component with at least one edge, as required.

Utilizing the above corollary we have the following result.

Corollary 2. Let G be a cyclic group and |π(G)| ≥ 3. Then for any subgroup 〈x〉 of G,
NI1(G)(〈x〉)′ is connected if and only if 〈x〉 is a prime-element or 〈x〉 is a maximal cyclic
subgroup of G.

Lemma 3. Let G be a cyclic group. Then Ic(G) has a vertex of degree 1 if and only if
|G| = p2 or pq, for some distinct prime numbers p and q.

Proof. Let G be a cyclic group and 〈x〉 ⊂ G such that deg(〈x〉) = 1. Then we have

|i(〈x〉)| = 1 and |O(〈x〉)| = 0 or |i(〈x〉)| = 0 and |O(〈x〉)| = 1. Suppose |i(〈x〉)| = 1

and |O(〈x〉)| = 0, then 〈x〉 is a p-element and maximal subgroup. Hence |G| = p2 or

pq. If |i(〈x〉)| = 0 and |O(〈x〉)| = 1, then 〈x〉 is a generator, which has exactly one

proper non-trivial subgroup. So 〈x〉 is a p-group of order p2. Hence |G| = p2.

The converse is trivial.

In the next theorem, we use the following famous theorem.

Theorem 2. [16, Theorem 5.3.6] A finite p-group has exactly one subgroup of order p
if and only if it is cyclic or generalized quaternion group, where the generalized quaternion

group Q2n = 〈a, b|a2
n−1

= b2, b−1ab = a−1〉.

Theorem 3. Let G and H be finite groups and G be a cyclic group such that Ic(G) ∼=
Ic(H). Then H is cyclic too.

Proof. Since G is a cyclic group, there exists 〈a〉 ⊆ G such that 〈a〉 = G and

N [〈a〉] = Ic(G). Also since Ic(G) ∼= Ic(H), H has a non-trivial cyclic subgroup 〈h〉
such that N [〈h〉] = Ic(H).
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Firstly assume that |〈h〉| = pα. Then there exists 〈y〉 ⊂ 〈h〉 such that |〈y〉| = p. Since

N [〈h〉] ⊆ N [〈y〉], N [〈y〉] = Ic(H). Also since prime-elements are not adjacent, H is

a p-group and has exactly one subgroup of order p. By Theorem 2, H is a cyclic or

a generalized quaternion 2-group. If H is generalized quaternion group, then H has

a cyclic subgroup 〈x〉 of order 4 such that deg(〈x〉) = 1. Thus G has a subgroup a

with deg(〈a〉) = 1 and by Lemma 3, |G| = p2 or |G| = pq. Then |V (G)| < 4 but

|V (H)| ≥ 4, a contradiction. Thus H is a cyclic p-group.

Now suppose that |π(〈h〉)| ≥ 2. It is clear that π(〈h〉) = π(H). If 〈h〉 6= H then there

is a sylow subgroup P of H such that P * h. If p ∈ P \ 〈h〉, then 〈h〉 ⊆ 〈p〉. Hence

〈h〉 is a p-group, a contradiction.

Lemma 4. Let G be a cyclic group and 〈x〉 ⊂ G. Then the following statements hold:

i. If |π(G)| ≥ 3, then for each subgroup 〈x〉 of G, N(〈x〉)′ is not null.

ii. N(〈x〉) is a complete graph if and only if |G| = pm or |G| = pmqn where m,n ≥ 1 and
|〈x〉| = pm or qn.

Proof. Let |π(G)| ≥ 3. If |π(〈x〉)| ≥ 2, then by Lemma 1, O(〈x〉)′ is connected

with at least one edge and if |〈x〉| = pα, α ≥ 1, then |π( G
〈x〉 )| ≥ 2 and by Lemma 2,

iI1(G)(〈x〉)′ is connected with at least one edge, as required.

Now suppose that N(〈x〉) is a complete graph. By the first part |π(G)| ≤ 2. Let

|G| = pmqn and |〈x〉| = pα, α < m or |〈x〉| = pαqβ , α, β ≥ 1. Then by Lemmas 2

and 1, iI1(G)(〈x〉)′ or O(〈x〉)′ is connected, a contradiction. Also if |G| = pmqn and

|〈x〉| = pm or qn, then N(〈x〉) is complete, as required.

Lemma 5. Let G and H be cyclic groups of orders pα1
1 . . . pαtt and qα1

1 . . . qαtt , respectively.
Then Ic(G) ∼= Ic(H).

Proof. By hypothesis |V (G)| = |V (H)| =
∏t
i=1(αi + 1) − 1. Suppose πe(G) and

πe(H) are the set of all numbers that divide the order of G and H, respectively.

Since G and H are cyclic, for any n ∈ πe(G) and m ∈ πe(H), G and H has exactly

one subgroup of order n and m, respectively. Hence the map f : V (G) → V (H)

defined by f(〈a〉) = 〈b〉 where |〈a〉| = pβ1

1 . . . pβtt and |〈b〉| = qβ1

1 · · · q
βt
t , is a graph

isomorphism.

The following theorem provides a necessary and sufficient condition for cyclic groups

to have isomorphic graphs.

Theorem 4. Let G and H be cyclic groups of orders pα1
1 . . . pαtt , t ≥ 3, and qβ11 . . . qβss ,

respectively. Then Ic(G) ∼= Ic(H) if and only if t = s and by a convenient permutation σ,
αi = βσ(i).

Proof. Let Ic(G) ∼=ϕ Ic(H). Since G and H are cyclic, I1(G) ∼=ϕ I1(H). Also since

Ic(G) is not complete, s ≥ 2. If |H| = pmqn, then H has a subgroup 〈x〉 of order
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pm such that NIc(H)(〈x〉)′ is null, which contradicts Lemma 4. Hence |π(H)| ≥ 3.

Let S(G) be the set of all non-trivial subgroups 〈a〉 of G such that NI1(G)(〈a〉)′ =

A ∪ B where A is a connected component with at least one edge and B is null.

By Corollary 1, 〈x〉 ∈ S(G) if and only if |〈x〉| = pα or | G〈x〉 | = pα, α ≥ 1. Let

Ai = {〈x〉 ∈ S(G)
∣∣ |〈x〉|∣∣pαii } and Bi = {〈y〉 ∈ S(G)

∣∣ | G〈y〉 |∣∣pαii }, 1 ≤ i ≤ t. One can

see that [Ai ∪ Aj ]′ ∼= K|Ai|,|Aj |, [Bi ∪Bj ]′ ∼= K|Bi|,|Bj | and [Ai ∪Bj ]′ is a null graph,

for any i 6= j. We assume that 〈xi〉 and 〈yi〉, 1 ≤ i ≤ t, are subgroups of orders

pαii and |G|
p
αi
i

, respectively. If |〈aij〉| = pαi−j+1
i and |〈bij〉| = |G|

p
αi−j+1

i

, 1 ≤ j ≤ αi,

then |〈xi〉| - |〈bij〉| and |〈bij〉| - |〈xi〉| (similarly |〈yi〉| - |〈aij〉| and |〈aij〉| - |〈yi〉| ), so

〈xi〉 ∼ 〈bij〉, 〈yi〉 ∼ 〈aij〉 ∈ [S(G)]′ and [Ai ∪Bi]′ is a connected graph.

Claim 1. ω([S(G)]′) = t.

Since [A1 ∪A2 ∪ · · · ∪At]′ is complete t-partite graph, ω([S(G)]′) ≥ t. By a contrary,

let ω([S(G)]′) ≥ t+ 1. Let K be a complete subgraph of [S(G)]′ with t+ 1 vertices.

Since A′i and B′i are null, each pair of vertices of K don’t lie in one set of Ai or Bi.

Thus there exist Ai and Bj such that |V (K)∩Ai| = |V (K)∩Bj | = 1. Since [Ai∪Bj ]′
is null, for i 6= j, V (K) ⊆ Ai∪Bi. Also since [Ai∪Bi]′ is bipartite graph, |V (K)| ≤ 2,

which contradicts to t ≥ 3, and the claim is proved.

Claim 2. ∆([S(G)]′) = α1 + · · ·+ αt.

Let 〈xij〉 ∈ Ai be a subgroup of order pji and 〈yij〉 ∈ Bi be a subgroup of order |G|
p
αi−j+1

i

,

for 1 ≤ j ≤ αi and 1 ≤ i ≤ t. Since any vertex 〈xij〉 is joined with all subgroups 〈yil〉 in

Bi when (|〈xij〉|, |〈yil〉|) = pki , 0 ≤ k ≤ j−1, deg[S(G)]′(〈xij〉) = j+Σk 6=iαk. Similarly

deg[S(G)]′(〈yij〉) = (αi− j+1)+Σk 6=iαk. Therefore ∆([S(G)]′) = α1 +α2 + · · ·+αt =

deg[S(G)]′(〈xiαi〉) = deg[S(G)]′(〈yi1〉).
Similarly ω([S(H)]′) = s. Since I1(G) ∼= I1(H), [S(G)]′ ∼= [S(H)]′. Hence

ω([S(G)]′) = ω([S(H)]′) and t = s. Let S(H) = C1 ∪ · · · ∪ Ct ∪ D1 ∪ · · · ∪ Dt,

in which Ci = {〈x〉 ∈ S(H)
∣∣ |〈x〉|∣∣qβii } and Di = {〈y〉 ∈ S(H)

∣∣ | G〈y〉 |∣∣qβii }, 1 ≤ i ≤ t.
By the proof of claim 2, if 〈a〉 ∈ Ai has the maximum degree in [S(G)]′,

then N[S(G)]′(〈a〉) =
(⋃

k 6=iAk

)
∪ Bi. Also if 〈b〉 ∈ Bi has the maximum de-

gree in [S(G)]′, then N[S(G)]′(〈b〉) =
(⋃

k 6=iBk

)
∪ Ai. Now we assume that

〈ai〉 ∈ Ai has the maximum degree. Then {〈a1〉, . . . , 〈at〉} is a clique. Then

ϕ(〈ai〉) has the maximum degree and {ϕ(〈a1〉), . . . , ϕ(〈at〉)} is a clique too. Hence

{ϕ(〈a1〉), . . . , ϕ(〈at〉)} ⊆
⋃t
i=1 Ci or {ϕ(〈a1〉), . . . , ϕ(〈at〉)} ⊆

⋃t
i=1Di. Let

{ϕ(〈a1〉), . . . , ϕ(〈at〉)} ⊆
⋃t
i=1 Ci and ϕ(〈ai〉) ∈ Cσ(i), for some permutation σ. Now

one can see that
⋂
i6=j N[S(G)]′(〈ai〉) = Aj and

⋂
i 6=j N[S(H)]′)(ϕ(〈ai〉)) = Cσ(j), and

then ϕ(Ai) = Cσ(i). Consequently, αi = βσ(i), as required.

The converse holds by Lemma 5.

Now we focus on the group G with |π(G)| = 2. In what follows,

S1(G) = {〈x〉 ⊂ G
∣∣ NI1(G)(〈x〉)′ is connected }.

In the following lemma all cyclic groups G are characterized , in which [S1(G)] is

completed.
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Lemma 6. Let G be a cyclic group. Then [S1(G)] is a complete graph if and only if
|G| = pmq, m > 1, or |G| = p3.

Proof. Let [S1(G)] be complete graph and G = P1 × · · · × Pt, t ≥ 3. Then by

Corollary 2, S1(G) = {〈x〉 ⊂ G
∣∣ 〈x〉 is a prime-element or 〈x〉 is maximal }. Since

prime-elements are not adjacent, [S1(G)] is not complete, a contradiction. Let t = 1

and |G| = pm, m 6= 3. Then S1(G) = ∅. Now if |G| = p3, then [S1(G)] ∼= K2, as

required. Suppose t = 2 and |G| = pmqn, m, n > 1. Let 〈a〉, 〈b〉subsetG of orders

p and q, respectively. Since |π( G
〈a〉 )| = |π( G〈b〉 )| = 2, by Lemma 2, 〈a〉, 〈b〉 ∈ S1(G),

a contradiction. Also if m = n = 1, then S1(G) = ∅. Now assume that m > 1 and

n = 1. Then S1(G)={〈x〉 ⊂ G
∣∣|〈x〉|=p or |〈x〉|=pm−1q} and [S1(G)] ∼= K2.

Theorem 5. Let G be a cyclic group of order pmqn, m,n ≥ 1 and Ic(G) ∼= Ic(H). Then
|H| = pm1 q

n
1 .

Proof. By Theorems 3 and 4, H is cyclic and π(H) < 3. If |H| = pm, then Ic(H) is

a complete graph, a contradiction. Hence |H| = pm1
1 qn1

1 .

Let n = 1. By Lemma 6, m1 = 1 or n1 = 1. Also |V (G)| = 2m+ 1. Assume n1 = 1.

Then |V (H)| = 2m1 + 1 and m = m1.

Now assume that m,n > 1. Similar to the argument of the previous theorem, set

S(G)={〈x〉 ⊂ G | NI1(G)(〈x〉)′=A∪B, A is connected and B is null }.

It is obvious that 〈a〉∈S(G) if and only if |〈a〉|=piqn or pi for 1 ≤ i<m, or |〈a〉|=pmqj
or qj for 1 ≤ j <n. Let A1 = {〈a〉∈S(G)

∣∣|〈a〉|=pi, i<m}, B1 ={〈a〉∈S(G)
∣∣|〈a〉|=

piqn, i<m}, A2 ={〈a〉∈S(G)
∣∣|〈a〉|=qj , j <n} and B2 ={〈a〉∈S(G)

∣∣|〈a〉|=pmqj , j <

n}. Let 〈ai〉∈A1 of order pi, 〈bi〉∈A2 of order qi, 〈ci〉∈B1 of order piqn and 〈di〉∈B2

of order pmqi. Then deg[S(G)]′(〈ai〉) = n + i − 2, deg[S(G)]′(〈bi〉) = m + i − 2 and

deg[S(G)]′(〈ci〉)=deg[S(G)]′(〈di〉)=m+n−(i+2). Hence δ([S(G)]′)=min{m,n}−1 and

∆([S(G)]′)=m+n−3. Assume that m≤n and m1≤n1. Then m+n−3 = m1 +n1−3

and m− 1 = m1 − 1. Therefore m = m1 and n = n1, as required.

Since for cyclic p-groups G of order pn, Ic(G) ∼= Kn, by Theorems 4 and 5, we have

the following result.

Corollary 3. Let G be a cyclic group of order pα1
1 · · · p

αt
t and H be a group of order

qβ11 · · · qβss . Then Ic(G) ∼= Ic(H) if and only if H is cyclic, t = s and by a convenient
permutation σ, αi = βσ(i).

Also by Corollary 3 and Theorem 1, one can see that the following result holds.

Corollary 4. If G is a cyclic group and Ic(G) ∼= Ic(H), then
−→
Ic(G) ∼=

−→
Ic(H).
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4. Abelian Groups

In this section we focus on the abelian groups. Let G be a p-group. We denote the

number of cyclic subgroups of order pi of G with cpi(G).

Theorem 6. Let G and H be abelian p-groups such that for any positive integer k, they
have the same number of cyclic subgroups of order pk. Then G ∼= H.

Proof. Let G ∼= Zpα1 × · · · ×Zpαt and H ∼= Zpβ1 × · · · ×Zpβs . Since cp(G) = cp(H),
pt−1
p−1 = ps−1

p−1 , and then t = s.

If G is an elementary abelian group, the proof is obvious. Now assume that

G = G1 × G2 where G2 is homocyclic of exponent pα = exp(G), α > 1, and

G2
∼= Zpα × · · · × Zpα︸ ︷︷ ︸

t1−times

. Also H = H1 × H2 where H2 is homocyclic of exponent

pβ = exp(H) and H2
∼= Zpβ × · · · × Zpβ︸ ︷︷ ︸

s1−times

. By hypothesis exp(G) = exp(H), so α = β,

and then cpα(G) = cpα(H). Therefore

(pα)t1 − (pα−1)t1

pα − pα−1
|G1| =

(pα)s1 − (pα−1)s1

pα − pα−1
|H1|

⇒ (pα−1)t1(pt1 − 1)|G1| = (pα−1)s1(ps1 − 1)|H1|

Since G1, H1 are p-groups, pt1 − 1 = ps1 − 1, and then t1 = s1.

On the other hand since the number of cyclic subgroups of order pk, k < α, in G1×Gp2
and G are equal and the number of cyclic subgroups of order pk, k < α, in H1 ×Hp

2

and H are equal too, G1 ×Gp2 and H1 ×Hp
2 have equal number of cyclic subgroups.

By induction G1 ×Gp2 ∼= H1 ×Hp
2 . Consequently G1

∼= H1 and G2
∼= H2.

In the following, the distance between two distinct prime-elements and two distinct

maximal cyclic subgroups is calculated.

Lemma 7. Let G be an abelian group and |π(G)| ≥ 2. Then for each two distinct
prime-elements or two maximal cyclic subgroups 〈x〉 and 〈y〉, d(〈x〉, 〈y〉) ∈ {2, 4}.

Proof. Firstly assume that 〈x〉, 〈y〉 are prime-elements and |〈x〉|= |〈y〉|= p. By

hypothesis there exist 〈a〉 ⊂ G such that |〈a〉|= q where q 6=p is a prime. Since G

is abelian, 〈x〉 ∼ 〈ax〉 ∼ 〈a〉 ∼ 〈ay〉 ∼ 〈y〉 is a path of length 4 from 〈x〉 to 〈y〉 and

d(〈x〉, 〈y〉)≤4. If d(〈x〉, 〈y〉)=2 and 〈x〉∼〈c〉∼〈y〉, then 〈x〉, 〈y〉⊂ 〈c〉, a contradiction.

Now assume that 〈x〉∼〈a1〉∼〈a2〉∼〈y〉 be a path of length 3 from 〈x〉 to 〈y〉. Since

〈x〉 and 〈y〉 are prime-elements, 〈x〉 ⊂ 〈a1〉 and 〈y〉 ⊂ 〈a2〉. Also 〈a1〉 ⊂ 〈a2〉 or

〈a2〉⊂〈a1〉. We can assume that 〈a2〉⊂〈a1〉. Hence 〈y〉⊂〈a1〉, a contradiction. Thus
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d(〈x〉, 〈y〉)=4. Also if (|〈x〉|, |〈y〉|)=1, then 〈x〉∼〈xy〉∼〈y〉 is a path of length 2 and

since 〈x〉, 〈y〉 are not adjacent, d(〈x〉, 〈y〉)=2.

Now suppose that 〈x〉, 〈y〉 are distinct maximal cyclic subgroups. If 〈x〉 ∩ 〈y〉=〈e〉,
then there are prime-elements 〈a〉 ⊂ 〈x〉 and 〈b〉 ⊂ 〈y〉 such that |〈a〉| 6= |〈b〉| and

〈x〉∼〈a〉∼〈ab〉∼〈b〉∼〈y〉. Hence d(〈x〉, 〈y〉)≤4. If d(〈x〉, 〈y〉)=2 and 〈x〉∼〈a〉∼〈y〉
for some cyclic subgroup 〈a〉, then 〈a〉⊂ 〈x〉 ∩ 〈y〉, a contradiction. Let d(〈x〉, 〈y〉)=3

and 〈x〉∼〈a1〉∼〈a2〉∼〈y〉 be a path of length 3 from 〈x〉 to 〈y〉. Then 〈a1〉⊂ 〈x〉 and

〈a2〉 ⊂ 〈y〉. Since 〈a1〉∼〈a2〉, we can assume that 〈a1〉 ⊂ 〈a2〉, and then 〈a1〉 ⊂ 〈y〉, a

contradiction. Thus d(〈x〉, 〈y〉)=4. Also if 〈x〉 ∩ 〈y〉6=〈e〉, then 〈x〉∼〈x〉 ∩ 〈y〉∼〈y〉 is a

path of length 2 from 〈x〉 to 〈y〉 and d(〈x〉, 〈y〉)=2.

Let nc(G) be the number of connected components of the inclusion graph of a p-

group G. The following theorem shows that the isomorphic inclusion graphs of cyclic

subgroups of some non-cyclic abelian groups implies that their corresponding groups

are isomorphic.

Theorem 7. Let G and H be non-cyclic abelian p-group and q-group, respectively, and
G is an not elementary abelian group such that Ic(G) ∼= Ic(H). Then G ∼= H.

Proof. Let G = G1 × · · · × Gt and H = H1 × · · · × Hs. Suppose that G1
∼=

. . . ∼= Gr1−1
∼= Zpβ0 , Gr1

∼= · · · ∼= Gr2−1
∼= Zpβ1 , . . . , Grm

∼= . . . ∼= Gt ∼= Zpβm ,

β0 < β1 < · · · < βm and H1
∼= . . . ∼= Hr′1−1

∼= Z
qβ
′
0
, Hr′1

∼= . . . ∼= Hr′2−1
∼= Z

qβ
′
1
,

· · · , Hr′n
∼= . . . ∼= Hs

∼= Z
qβ
′
n

, β′0 < β′1 < · · · < β′n. Let B1 ⊂ G be a cyclic

subgroup. Then N [B1] is a connected component of Ic(G) if and only if |B1| = p.

Let B2 ∈ N [B1] \ {B1}. N [B2] \ {B1} is a connected component of N [B1] \ {B1} if

and only if |B2| = p2. By continuing this process we can find the order of any cyclic

subgroup of G, and also all chains B1 ⊂ B2 ⊂ · · · ⊂ Bk where |Bi| = pi and Bk is a

maximal cyclic subgroup. For any element B of order p, let L(B) be the maximum

length of chains with started to B. One can see that L(B) ∈ {β0, · · · , βm}. Let

B = 〈(a1, . . . , at)〉. Then L(B) = βj if and only if ai = ei for i < rj and there exists

k, rj ≤ k ≤ rj+1 − 1 such that ak 6= ek. Hence the number of cyclic subgroups B of

order p where L(B) = βj , is equal to:

prj+1−rj − 1

p− 1
× pt−rj+1+1

where r0 = 1 and rm+1 − 1 = t.

Similarly for any cyclic subgroup B′ of order q of H, L(B′) ∈ {β′0, . . . , β′n}, and then

n = m and {β0, · · · , βm} = {β′0, . . . , β′m} which shows that βi = β′i. Let L(B) = βm.

The number of connected component of N [B] \ {B} is equal to the number of cyclic

subgroups of order p2 contains B. Thus

nc(N [B] \ {B}) =
pt−1(p2 − p)

p2 − p
= pt−1.
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Similarly for H, nc(N [B′] \ {B′}) = qs−1(q2−q)
q2−q = qs−1. Therefore p = q and t = s.

Now by comparing the number of cyclic subgroups B where L(B) = βj for G and H,

we can find the number of all factors of H and the orders of each factor. Hence H is

completely specified and G ∼= H.

A group G is said to be an EPO-group, if all non-trivial element orders of G are

prime. A complete classification of EPO-group has been given in [6, 7]. It is clear

that for a finite group G, Ic(G) is null if and only if G is an EPO-group.

The following remark shows that the Lemma 7, is not true for elementary abelian

groups and non-abelian groups.

Remark 2. If G and H are abelian groups and G is an elementary abelian group such
that Ic(G) ∼= Ic(H), then H is elementary abelian too. But we cannot in general conclude
that G ∼= H. For example if G = Z2 × · · · × Z2︸ ︷︷ ︸

5−times

and H = Z5 × Z5 × Z5, |V (Ic(G))| =

|V (Ic(H))| = 31, then Ic(G) ∼= Ic(H) but G � H.
Also if G is an elementary abelian group and H be a group such that Ic(G) ∼= Ic(H), then
H is not in general abelian. For example let G1 = Z3×Z3 and H1 = S3 or G2 = Z5×Z5×Z5

and H2 = A5. By [7, Main Theorem], Gi, Hi, i ∈ {1, 2} are EPO-groups and one can see
that Ic(Gi) ∼= Ic(Hi) but Gi � Hi.

Next lemma is important for further investigations.

Lemma 8. Let G = P1 × · · · × Pt, t ≥ 2, be a non-cyclic abelian group and Pi be sylow
subgroups of G. Then the following statements hold.

i. If 〈x〉 ⊂ G and N(〈x〉)′ is connected, then 〈x〉 is a prime-element or 〈x〉 is a maximal
cyclic subgroup.

ii. If 〈x〉 ⊂ G is a maximal cyclic subgroup, then N(〈x〉)′ is connected.

iii. If P1 is non-cyclic and 〈x〉 ⊂ Pi, i ≥ 2, is a prime-element, then N(〈x〉)′ is connected.

Proof. Since N(〈x〉)′ = O(〈x〉)′∪i(〈x〉)′ and N(〈x〉)′ is connected, we have O(〈x〉)′ =

∅ or i(〈x〉)′ = ∅. Hence |〈x〉| is a prime or 〈x〉 is a maximal cyclic subgroup, respec-

tively.

Suppose that 〈x〉 = 〈(x1, . . . , xt)〉 is a maximal cyclic subgroup. Then i(〈x〉) = ∅.
Also since G is non-cyclic, |π(〈x〉)| = t. Now by Lemma 1, O(〈x〉)′ and consequently

N(〈x〉)′ is connected.

Now let |〈x〉| = p2. Then

N(〈x〉) = {〈a〉 = 〈(a1, . . . , at)〉
∣∣ api22 = x, for some i ∈ Z and aj ∈ Pj , j 6= 2}.

Let 〈b〉, 〈c〉 be two distinct prime-elements of P1. For any 〈a〉 ∈ N(〈x〉), either

〈xb〉 6∈ N(〈a〉) or 〈xc〉 6∈ N(〈a〉). Also 〈xb〉 is not adjacent to 〈xc〉, as desired.

The following key lemma will be used frequently in the rest of the paper.
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Lemma 9. Let G = P1 × · · · × Pt, t ≥ 2, be an abelian group and P1 is not cyclic. If
〈x〉 is a maximal cyclic subgroup of G, then there is a prime-element 〈y〉 of P2 such that
deg(〈y〉) > deg(〈x〉).

Proof. Let 〈x〉 ⊂ G be a maximal cyclic subgroup of order pr11 · · · p
rt
t . Then

deg(〈x〉) = (r1 + 1)(r2 + 1) · · · (rt + 1)− 2.

Suppose that 〈y〉 ⊂ 〈x〉 and |〈y〉| = p2. Then

deg(〈y〉)≥|V (Zpr11 × Zp1)| × r2 × (r3 + 1) · · · (rt + 1)− 1

>(r1p1 + 2)(r2)(r3 + 1) · · · (rt + 1)− 2.

Since (r1p1 + 2)r2 ≥ (r1 + 1)(r2 + 1), deg(〈y〉) > deg(〈x〉).

Let G be a non-cyclic group. Similar to the last section, we consider S1(G) = {〈x〉 ⊂
G
∣∣ N(〈x〉)′ is connected }. By Lemma 8, one can see that

S1(G) ⊆ {〈x〉 ⊂ G
∣∣ 〈x〉 is a prime-element or maximal cyclic subgroup}.

Theorem 8. Let G, H be abelian groups and G = P1×· · ·×Pt, t ≥ 2, where Pi are sylow
subgroups of G and P1, P2 are not cyclic. Also let H = Q1×· · ·×Qs. Then Ic(G) ∼=ϕ Ic(H)
if and only if t = s and by a convenient permutation σ, Ic(Pi) ∼= Ic(Qσ(i)).

Proof. By Lemma 8,

S1(G) = {〈x〉 ⊂ G
∣∣ 〈x〉 is a prime-element or maximal cyclic subgroup}.

Also by Lemma 9, any element of maximum degree in S1(G) has prime order. Let 〈a〉
has maximum degree and |〈a〉| = p. If 〈b〉 ∈ S1(G) and |〈b〉| is not prime, then there is

q 6= p such that q
∣∣|〈b〉|. Assume that 〈y〉 ⊂ 〈b〉 and |〈y〉| = q. Hence d(〈a〉, 〈y〉) = 2 and

d(〈a〉, 〈b〉) ≤ 3. If d(〈a〉, 〈b〉) = 2 and 〈a〉 ∼ 〈d〉 ∼ 〈b〉, then 〈a〉 ⊂ 〈d〉 and 〈d〉 ⊂ 〈b〉,
a contradiction. Thus d(〈a〉, 〈b〉) = 1 or 3. Set S2(G) = {〈x〉 ∈ S1(G)

∣∣ d(〈a〉, 〈x〉) =

0 or 2 or 4}. By Lemma 7,

S2(G) = {〈b〉 ∈ S1(G)
∣∣ |〈b〉| is prime}.

By Theorem 3, H is not cyclic. Also since Ic(G) is connected, s ≥ 2 and by Lemma

9, ϕ(〈a〉) is a prime-element, and then

ϕ(S2(G)) = {〈x〉 ∈ S1(H)
∣∣ 〈x〉 is a prime-element}.
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By a contrary, let 〈h〉 ∈ V (H)\S1(H) be a prime-element. Then d(〈h〉, ϕ(S2(G))) = 2

but d(ϕ−1(〈h〉), S2(G)) ∈ {0, 1}, a contradiction. Hence S1(H) contains all prime-

elements of H and ϕ(S2(G)) is the set of all prime-elements of H. Thus all elements

of prime order in G and H are specified. Set

T (G) = {〈x〉 ⊂ G
∣∣ |N(〈x〉) ∩ S2(G)| = 1} ∪ S2(G).

It can be seen that 〈x〉 ∈ T (G) if and only if |〈x〉| is prime power. Thus T (G) =

V (P1)∪· · ·∪V (Pt). Let A1, A2 be two connected components of [T (G)]. Then A1, A2

are in the same sylow subgroup if and only if dIc(G)(A1, A2) = 4 and A1, A2 are in the

distinct sylow subgroups if and only if dIc(G)(A1, A2) = 2. Thus any sylow subgroup

of G is specified by the graph. Set

T (H) = { 〈y〉 ⊂ H
∣∣ |N(〈y〉) ∩ ϕ(S2(G))| = 1 } ∪ ϕ(S2(G)).

Similarly T (H) = V (Q1) ∪ · · · ∪ V (Qs). By the hypothesis, ϕ(T (G)) = T (H). Hence

s = t and for a convenient permutation σ, Ic(Pi) ∼=ϕ Ic(Qσ(i)).

Conversely, let s = t and σ be a permutation, where Ic(Pi) ∼= Ic(Qσ(i)). By Corollary

3 and Theorem 6,
−→
Ic(Pi) ∼=

−→
Ic(Qσ(i)). Now Theorem 1, completes the proof.

Now we prove the previous theorem for abelian groups with only one non-cyclic sylow

subgroup.

Theorem 9. Let G, H be abelian groups and G = P1 × · · · × Pt, t ≥ 2, and H =
Q1 × · · · ×Qs, where P1 is not cyclic and Pi are cyclic for i > 1. Then Ic(G) ∼=ϕ Ic(H) if
and only if s = t and for a convenient permutation σ, Ic(Pi) ∼=ϕ Ic(Qσ(i)).

Proof. By Theorem 3, H is not cyclic. Also since Ic(G) is connected, s ≥ 2. We

consider the following two cases:

Case 1. P1 is not an elementary abelian group. Hence by the hypothesis there are

distinct cyclic subgroups 〈b〉, 〈b1〉 and 〈b2〉 of P1 such that 〈b〉 is a prime-element and

〈b〉 ⊂ 〈b1〉 ∩ 〈b2〉 and |〈b1〉| = |〈b2〉| = p2
1. Since for any 〈x〉 ∈ N(〈b〉), 〈x〉 6∈ N(〈b1〉) or

〈x〉 6∈ N(〈b2〉) and 〈b1〉 is not adjacent to 〈b2〉, N(〈b〉)′ is connected and by Lemma 8,

for any i, S1(G) ∩ Pi 6= ∅.
Let deg(〈a〉) = Max{deg(〈x〉)

∣∣ 〈x〉 ∈ S1(G)}. Since P1 is not cyclic, by Lemma 9, 〈a〉
is prime-element. Let 〈c〉 ∈ S1(G). d(〈a〉, 〈c〉) = 2 or 4 if and only if 〈c〉 is a prime-

element. Also for 〈x〉 ∈ S1(G), 〈x〉 ⊂ P1 if and only if there is 〈y〉 ⊂ G such that

d(〈x〉, 〈y〉) = 4. Assume that 〈x1〉 ∈ S1(G)∩V (P1) and A = {〈y〉 ⊂ G
∣∣ d(〈y〉, 〈x1〉) =

4}. One can see that 〈y〉 ∈ A if and only if 〈y〉 ⊂ P1 and 〈y〉 6∈ N [〈x1〉]. Let 〈y1〉 ∈ A
and B = {〈y〉 ⊂ G

∣∣ d(〈y〉, 〈y1〉) = 4 }. Similarly B ⊆ V (P1) and NIc(P1)[〈x1〉] ⊆ B.

One can see that V (P1) = A∪B. Now for 〈z〉 ∈ S1(G), d(〈z〉, V (P1)) = 2 if and only if
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〈z〉 is a prime-element and |〈z〉| 6= p1. Let 〈a2〉 ⊂ P2, . . . , 〈at〉 ⊂ Pt be prime-elements.

Then for i ≥ 2,

V (Pi)={〈x〉⊂ G
∣∣〈x〉∈N [〈ai〉] and N(〈x〉) ∩ (V (P1) ∪ ({〈a2〉, . . . , 〈at〉} \ {〈ai〉}))=∅ }.

Hence all vertices of all sylow subgroups of G are specified. By Theorem 8, one of

Q1, . . . , Qs is not cyclic and any others are cyclic. We can assume Q1 is not cyclic

and H = Q1×· · ·×Qt. consequently ϕ(〈a〉) is a prime-element and by an elementary

argument Ic(Pi) ∼=ϕ Ic(Qi).
Case 2. P1 is an elementary abelian group. Let 〈x〉 ⊂ P1 be a cyclic subgroup. Then

|〈x〉| = p1 and

N(〈x〉) = { 〈y〉 ⊂ G
∣∣ 〈x〉 ⊂ 〈y〉 and |〈y〉| = p1p

r2
2 . . . prtt , rj ≥ 1 for some j }.

Let Pi = 〈bi〉, i ≥ 2, and 〈y〉 = 〈xb2〉 . . . 〈bt〉. Then 〈y〉 ∈ N(〈x〉) and for any

〈z〉 ∈ N(〈x〉), 〈z〉 ⊂ 〈y〉. Hence N(〈x〉)′ is not connected, and then V (P1)∩S1(G) = ∅.
Let 〈a〉 ∈ S1(G) has the maximum degree in S1(G). Then 〈a〉 is prime-element

and similar to last case all prime-elements of P2, . . . , Pt are specified. Assume that

〈a2〉 ⊂ P2, . . . , 〈at〉 ⊂ Pt are prime-elements. Set

A1 = {〈x〉 ⊂ G
∣∣ d(〈x〉, {〈a2〉, . . . , 〈at〉}) = 2 },

and for i ≥ 2,

Ai = {〈x〉 ⊂ G
∣∣ d(〈x〉, A1 ∪ {〈a2〉, . . . , 〈ai−1〉, 〈ai+1〉, . . . 〈at〉}) = 2}.

Then V (Pj) = Aj , for any j, 1 ≤ j ≤ t. Hence all vertices of all sylow subgroups

of G are specified. By Theorem 8, and last case H = Q1 × · · · × Qt where Q1 is an

elementary abelian group and Q2, . . . , Qt are cyclic. By Theorem 4 and Remark 2,

Ic(Pi) ∼=ϕ Ic(Qi), as required.

The converse of theorem by Corollary 3, Theorem 6 and Theorem 1, is clear.

According to the above theorems and Theorem 1, the following results can be easily

observed.

Corollary 5. Let G = P1 × · · · × Pt ×Zpαt+1
t+1

× · · · ×Zpαnn be an abelian group such that

Pi are non-cyclic and exp(Pi) ≥ p2i and H be an abelian group. Then Ic(G) ∼= Ic(H) if and
only if H = P1 × · · · × Pt × Zqαt+1

t+1
× · · · × Zqαnn where qt+1, · · · , qn are distinct primes and

{p1, · · · , pt} ∩ {qt+1, · · · , qn} = ∅.

Corollary 6. Let G and H be abelian groups. Then Ic(G) ∼= Ic(H) if and only if
−→
Ic(G) ∼=

−→
Ic(H).



Z. Gharibbolooki, S.H. Jafari 179

Conflict of Interest: The authors declare that they have no conflict of interest.

Data Availability: Data sharing is not applicable to this article as no datasets were

generated or analyzed during the current study.

References

[1] J. Abawajy, A. Kelarev, and M. Chowdhury, Power graphs: A survey, Electron.

J. Graph Theory Appl. 1 (2013), no. 2, 125–147.

https://doi.org/10.5614/ejgta.2013.1.2.6.

[2] P.J. Cameron, The power graph of a finite group, II, J. Group Theory 13 (2010),

no. 779–783.

https://doi.org/10.1515/jgt.2010.023.

[3] P.J. Cameron and S. Ghosh, The power graph of a finite group, Discrete Math.

311 (2011), no. 13, 1220–1222.

https://doi.org/10.1016/j.disc.2010.02.011.
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