[1] M. Chellali and T.W. Haynes, Trees with unique minimum paired-dominating sets, Ars Combin. 73 (2004), 3–12.
[2] M. Chellali and T.W. Haynes, A characterization of trees with unique minimum double dominating sets, Util. Math. 83 (2010), 233–242.
[3] M. Fischermann and L. Volkmann, Unique minimum domination in trees, Australas. J. Combin. 25 (2002), 117–124.
[4] G. Gunther, B. Hartnell, L.R. Markus, and D. Rall, Trees with unique minimum paired-dominating sets, Congr. Numer. 101 (1994), 55–63.
[5] T.W. Haynes and M.A. Henning, Trees with unique minimum total dominating sets, Discuss. Math. Graph Theory 22 (2002), no. 2, 233–246.
https://doi.org/10.7151/dmgt.2349
[7] T.W. Haynes and M.A. Henning, Unique minimum semipaired dominating sets in trees, Discuss. Math. Graph Theory 43 (2023), no. 1, 35–53.
https://doi.org/10.7151/dmgt.2349
[8] B. Krishnakumari, Y.B. Venkatakrishnan, and M. Krzywkowski, On trees with total domination number equal to edge-vertex domination number plus one, Proc. Math. Sci. 126 (2016), 153–157.
https://doi.org/10.1007/s12044-016-0267-6
[9] J.R. Lewis, Vertex-edge and edge-vertex domination in graphs, Ph.D. thesis, Clemson University, Clemson, 2007.
[10] J.W. Peters, Theoretical and algorithmic results on domination and connectivity, Ph.D. thesis, Clemson University, Clemson, 1986.
[11] Y.B. Venkatakrishnan and B. Krishnakumari, An improved upper bound of edge–vertex domination number of a tree, Information Processing Letters 134 (2018), 14–17.
https://doi.org/10.1016/j.ipl.2018.01.012