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1. Introduction

Special number sequences are of great interests in research due to their wide uses in

other branches like geometry, combinatorics, approximation theory, statistics, cryp-

tography, physics, etc. Especially many numbers defined with the help of second-order

recurrence relations have been widely investigated by mathematicians in recent years.

One of such interesting sequence is Horadam sequence [13] which generalizes many

second order recurrences. In recent years, several works have been done on Horadam
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numbers. For example, Frontczak [8] studied the Horadam identities via binomial co-

efficients and gave many other known identities. G. Y. Şentürk et al. [28] obtained the

fundamental and algebraic properties of Horadam numbers and gave special matrix

representations of them. Horzum and Kocer [15] studied the polynomials associated

with Horadam numbers. T.D. Şentürk et. al. [29] presented study on the Horadam

hybrid numbers. C. Kızılateş [18] studied the Horadam hybrinomials. Yazlık, et al.

[32] investigated the k-Horadam sequence in more generalized way. Prasad, et al. [27]

extended the k-Horadam numbers to third order and studied their properties. It is

worthful to start with the definition of the Horadam numbers in generalized form.

Definition 1. ([32]) Let φ(k) and ψ(k) be scalar valued polynomials and k ∈ R+. Then
the k-Horadam sequence {Hk,n} in generalized form is defined by

Hk,n+2 = φ(k)Hk,n+1 + ψ(k)Hk,n, n ≥ 0, where Hk,0 = a, Hk,1 = b. (1)

Note that α =
(
φ(k) +

√
φ2(k) + 4ψ(k)

)
/2 and β =

(
φ(k)−

√
φ2(k) + 4ψ(k)

)
/2 are

two roots of the characteristic equation x2− φ(k)x−ψ(k) = 0 corresponding to Eqn.

(1). Thus, they satisfy the following properties:

α+ β = φ(k), α− β =
√
φ2(k) + 4ψ(k), αβ = −ψ(k),

α2 + β2 = φ2(k) + 2ψ(k) and α3 + β3 = φ3(k) + 3φ(k)ψ(k). (2)

The sequence defined by (1) is usually denoted by Hk,n(a, b;φ, ψ) and for simplicity

we use Hk,n if it does not cause ambiguity. We have listed some of the well-known

k-Horadam numbers in the following table for particular values of a, b and φ, ψ.

Name of Sequences Coefficient (φ, ψ) Initial values (a, b)

Horadam sequence (p, q) a, b

k-Fibonacci / k-Lucas sequence (k, 1) a = 0, b = 1 / a = 2, b = 1

Fibonacci / Lucas sequence (1, 1) a = 0, b = 1 / a = 2, b = 1

k-Jacobsthal / k-Jacobsthal-Lucas sequence (k, 2) a = 0, b = 1 / a = 2, b = k

k-Pell / k-Pell-Lucas sequence (2, k) a = 0, b = 1 / a = b = 2

k-Mersenne / k-Mersenne-Lucas sequence (3k,−2) a = 0, b = 1 / a = 2, b = 3k

k-balancing / k-Lucas-balancing sequence (6k,−1) a = 0, b = 1 / a = 1, b = 3

Table 1. List of some integer sequences Hk,n.

In [27, 32], the authors have studied the generalized k-Horadam sequence {Hk,n} and
presented some interesting properties of them. The closed form formula for sequence
(1) is given by

Hk,n =
Pαn −Qβn

α− β
and Hk,−n = (−1)n

Pβn −Qαn

(ψ(k))n(α− β)
, n ∈ N, (3)

where P = b− aβ and Q = b− aα.
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Before proceeding, it is worth noting some information on the progress of quaternion

and octonion. These hyper-complex numbers have wide application in various areas

like string theory, quantum physics, computer sciences, differential geometry, etc.

The concept of quaternions (H) was introduced in 1843 by W.R Hamilton [12], which

is an associative and non-commutative 4-dimensional algebra over R. Later in 1963,

Horadam [14] introduced the Fibonacci quaternions (Qn) and Lucas quaternions (Rn)

using the Fibonacci numbers Fn and Lucas numbers Ln , respectively, which are

defined as

Qn =

3∑
r=0

Fn+res and Rn =

3∑
r=0

Ln+res.

Motivated by Hamilton’s work, in 1843 J. Graves introduced the set of octonions

(O) which is a non-associative and non-commutative 8-dimensional algebra over R.

Many works on octonions with a number sequence have been done. For example, the

Fibonacci and Lucas octonions were studied by Keçilioğlu et al. [16] as

Qn =

7∑
r=0

Fn+res and Tn =

7∑
r=0

Ln+res.

For some recent works on variants of Fibonacci like quaternions, octonions and their

applications, see [1, 2, 6, 11, 17, 20–22, 25, 31].

Nowadays, research works are going on in more generalizations such as hyperbolic

quaternions, octonions, etc. involving a special Horadam number sequence. Some re-

cent works on the hyperbolic quaternions and octonions with known number sequences

are due to A. Godase for hyperbolic k-Fibonacci and k-Fibonacci Lucas octonions [9]

(and quaternions [10]), Özkan et al. [24] for hyperbolic k-Jacobsthal and k-Jacobsthal

Lucas quaternions, etc.

In the light of the above papers, here, we define and study the hyperbolic generalized

k-Horadam quaternions and octonions, respectively. Then we obtain some properties

of these newly established hyper-complex numbers. Finally, we present matrix repre-

sentations of these hyper-complex numbers and some nice determinant computations.

2. Hyperbolic Generalized k-Horadam Quaternions

In this section, we introduce the hyperbolic generalized k-Horadam quaternions and

study their some algebraic properties. First we establish the Binet formula and then

give some combinatorial identities of this sequence.
A hyperbolic quaternion Q is an expression of the form

Q = Q1 +Q2e1 +Q3e2 +Q4e3 = 〈 Q1,Q2,Q3,Q4〉 ,

where Q1,Q2,Q3,Q4 are real components and e0, e1, e2, e3 are hyperbolic quaternion
units. The bases of hyperbolic quaternions is B4 = {e0 = 1, e1, e2, e3}, where e0 is
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identity satisfy the non-commutative multiplication rule, defined as:

e0 = 1, e21 = e22 = e23 = 1, e1e2e3 = 1,

e1e2 = e3 = −e2e1, e2e3 = e1 = −e3e2, e3e1 = e2 = −e1e3.

Here, Q1 is the real part of Q and
∑3

r=1Qr+1er is vector part of Q and it is denoted

by R(Q) and V (Q), respectively. Thus, Q = R(Q) + V (Q).

Definition 2. The hyperbolic generalized k-Horadam quaternions {QWk,n}n≥0 are de-
fined as

QWk,n = Hk,n +Hk,n+1e1 +Hk,n+2e2 +Hk,n+3e3

=
〈
Hk,n, Hk,n+1, Hk,n+2, Hk,n+3

〉
.

Here, R(QWk,n) = Hk,n and V (QWk,n) =
〈
Hk,n+1, Hk,n+2, Hk,n+3

〉
.

The hyperbolic generalized k-Horadam quaternions QWk,n can be also extended to

negative indices n and they are given as

QWk,−n = Hk,−n +Hk,−n+1e1 +Hk,−n+2e2 +Hk,−n+3e3.

Definition 3. The conjugate of hyperbolic generalized k-Horadam quaternions QWk,n is
defined as

QWk,n = Hk,n −Hk,n+1e1 −Hk,n+2e2 −Hk,n+3e3

=
〈
Hk,n,−Hk,n+1,−Hk,n+2,−Hk,n+3

〉
.

Here, R(QWk,n) = Hk,n and V (QWk,n) = 〈−Hk,n+1,−Hk,n+2,−Hk,n+3〉.

Theorem 1. The hyperbolic generalized k-Horadam quaternions and their conjugates are
related as

QWk,n +QWk,n = 2Hk,n.

The norm of QWk,n is given as

N(QWk,n) = QWk,nQWk,n =
√
H2
k,n −H

2
k,n+1 −H

2
k,n+2 −H

2
k,n+3.

In this section, we define the following notations:

α̃ = 1 + αe1 + α2e2 + α3e3 and β̃ = 1 + βe1 + β2e2 + β3e3.

Now we give the following useful lemma for proofs of theorems.
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Lemma 1. For α̃ and β̃, the following identities are provided.

1. α̃β̃ = 2(1 + βe1 + β2e2) + (α3 + β3 + α− β)e3.

2. β̃α̃ = 2(1 + αe1 + α2e2) + (α3 + β3 − α+ β)e3.

3. α̃+ β̃ = 2 + φ(k)e1 + (φ2(k) + 2ψ(k))e2 + (φ3(k) + 3φ(k)ψ(k))e3.

4. α̃β̃ − β̃α̃ = 2φ(k)(−e1 − φ(k)e2 + e3).

5. α̃β̃ + β̃α̃ = 2(α̃+ β̃).

Proof. The identities can be can easily proved by definition of α̃ and β̃ using relation

(2).

Theorem 2. The Binet formula for hyperbolic generalized k-Horadam quaternions QWn

is given by

QWk,n =
Pαnα̃−Qβnβ̃

α− β
.

Proof. From (3), we have

QWk,n =

3∑
r=0

Pαn+r −Qβn+r

α− β
er

=
1

α− β

( 3∑
r=0

Pαn+rer −
3∑
r=0

Qβn+rer
)

=
1

α− β

(
Pαn

3∑
r=0

αrer −Qβn
3∑
r=0

βrer
)

=
1

α− β

(
Pαnα̃−Qβnβ̃

)
.

Thus, this completes the proof.

Theorem 3. For hyperbolic generalized k-Horadam quaternions QWk,n, the generating
function is given by

G(t) =
QWk,0 + (QWk,1 − φ(k)QWk,0)t

1− φ(k)t− ψ(k)t2
.

Proof. Let G(t) =
∑∞

n=0QWk,nt
n be an ordinary generating function for QWk,n.

Namely,
G(t) = QWk,0 +QWk,1t+QWk,2t

2 +QWk,3t
3 + . . . .

Then using Binet formula for hyperbolic generalized k-Horadam quaternions, we ob-

tain
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G(t) =
∞∑
n=0

QWk,nt
n

=
∞∑
n=0

Pαnα̃−Qβnβ̃
α− β

tn

=
1

α− β

(
Pα̃

∞∑
n=0

αntn −Qβ̃
∞∑
n=0

βntn
)

=
1

α− β

( Pα̃

1− αt
−

Qβ̃

1− βt

)
=

1

α− β

(Pα̃−Qβ̃ − t(Pα̃β −Qβ̃α)

(1− αt)(1− βt)

)
=

1

α− β

( (Pα̃−Qβ̃) + t((Pα̃α−Qβ̃β)− (α+ β)(Pα̃−Qβ̃)

1− (α+ β)t+ αβt2

)
.

Thus using Theorem 2, we have

G(t) =
QWk,0 + (QWk,1 − φ(k)QWk,0)t

1− φ(k)t− ψ(k)t2
.

Theorem 4. For hyperbolic generalized k-Horadam quaternions, the exponential gener-
ating function is given by

∞∑
n=0

QWk,n
tn

n!
=

Pα̃eαt −Qβ̃eβt√
φ2(k) + 4ψ(k)

.

Proof. Using Theorem 2, the result can be easily proved.

Theorem 5. For n, s ∈ Z, we have

QWk,n−sQWk,n+s −QW2
k,n =

PQ(−ψ(k))n−s(αs − βs)(α̃β̃βs − β̃α̃αs)
φ2(k) + 4ψ(k)

. (4)

Proof. Using Theorem 2 in the LHS, we have

QWk,n−sQWk,n+s−QW2
k,n =

(Pαn−sα̃−Qβn−sβ̃
α− β

)(Pαn+sα̃−Qβn+sβ̃
α− β

)
−
(Pαnα̃−Qβnβ̃

α− β

)2
.
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By using (2) and after some calculations, we find that

QWk,n−sQWk,n+s −QW2
k,n =

PQ

(α− β)2

(
− αn−sβn+sα̃β̃ − βn−sαn+sβ̃α̃+ αnβnα̃β̃ + βnαnβ̃α̃

)
=
PQ(αβ)n

(α− β)2

[
α̃β̃

(
1−

βs

αs

)
+ β̃α̃

(
1−

αs

βs

)]
=
PQ(αβ)n

(α− β)2
(αs − βs)

( α̃β̃
αs
−
β̃α̃

βs

)
=
PQ(αβ)n(αs − βs)

(α− β)2

( α̃β̃βs − β̃α̃αs
αsβs

)
=
PQ(−ψ(k))n−s(αs − βs)(α̃β̃βs − β̃α̃αs)

φ2(k) + 4ψ(k)
.

Setting s = 1 in Theorem 5 gives the following identity for hyperbolic generalized

k-Horadam quaternion which is known as the Cassini’s identity.

Corollary 1.

QWk,n−1QWk,n+1 −QW2
k,n =

PQ(−ψ(k))n−1(βα̃β̃ − αβ̃α̃)√
φ2(k) + 4ψ(k)

. (5)

Theorem 6. For n, r ∈ Z, we have

QWk,rQWk,n+1 −QWk,r+1QWk,n =
PQ(−ψ(k))n√
φ2(k) + 4ψ(k)

(
α̃β̃αr−n − β̃α̃βr−n

)
.

Proof. By virtue of Theorem 2, we get

QWk,rQWk,n+1 −QWk,r+1QWk,n =
(Pαrα̃−Qβrβ̃

α− β

)(Pαn+1α̃−Qβn+1β̃

α− β

)
−
(Pαr+1α̃−Qβr+1β̃

α− β

)(Pαnα̃−Qβnβ̃
α− β

)
.

On simplification and using (2), it gives

QWk,rQWk,n+1 −QWk,r+1QWk,n =
PQ

(α− β)2

(
α̃β̃αrβn(α− β) + β̃α̃βrαn(β − α)

)
=

PQ(α− β)

(α− β)2
(α̃β̃αrβn − β̃α̃βrαn)

=
PQ(−ψ(k))n√
φ2(k) + 4ψ(k)

(
α̃β̃αr−n − β̃α̃βr−n

)
.
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Theorem 7 (Finite sum formula). For φ(k) + ψ(k) 6= 1, we have

n∑
r=0

QWk,r =
QWk,1 + (1− φ(k))QWk,0 − ψ(k)QWk,n −QWk,n+1

1− φ(k)− ψ(k)
.

Proof. From Theorem 2, we write L.H.S. as

n∑
r=0

(Pαrα̃−Qβrβ̃
α− β

)
=

Pα̃

α− β

n∑
r=0

αr −
Qβ̃

α− β

n∑
r=0

βr

=
Pα̃

α− β
αn+1 − 1

α− 1
−

Qβ̃

α− β
1− βn+1

1− β

=
1

α− β

(Pα̃αn+1 − Pα̃
α− 1

−
Qβ̃ −Qβ̃βn+1

1− β

)
=

1

α− β

(Pα̃αn+1β − Pα̃β − Pα̃αn+1 + Pα̃

(α− 1)(β − 1)

−
Qβ̃βn+1α−Qβ̃α−Qβ̃βn+1 +Qβ̃

(α− 1)(β − 1)

)
.

Since (α− 1)(β − 1) = 1− φ(k)− ψ(k), thus using Theorem 2, we get

n∑
r=0

QWk,r =
QWk,1 + (1− φ(k))QWk,0 − ψ(k)QWk,n −QWk,n+1

1− φ(k)− ψ(k)
.

3. Hyperbolic Generalized k-Horadam Octonions

Now, we introduce the hyperbolic generalized k-Horadam octonions and study their

properties. We establish the Binet formula and then we present some well-known

identities of them.

Cariow, et al. [3, 4] defined the concept of hyperbolic octonion O, which is expressed

as

O = h0 + h1i1 + h2i2 + h3i3 + h4i4 + h5i5 + h6i6 + h7i7

= < h0, h1, h2, h3, h4, h5, h6, h7 >

where h0, h1, h2, h3, h4, h5, h6, h7 are the real components and i1, i2, i3 are quaternion

imaginary units, i4(i4
2 = 1) is a counter imaginary unit. For hyperbolic octonions,

bases are defined as follows:

i1i4 = i5, i2i4 = i6, i3i4 = i7, i4
2 = i5

2 = i6
2 = i7

2 = 1.

The multiplication rules for the bases of hyperbolic octonions O as mentioned in [3, 4]

are given in the Table 2.
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. i1 i2 i3 i4 i5 i6 i7

i1 −1 i3 −i2 i5 i4 −i7 i6

i2 −i3 −1 i1 i6 i7 i4 −i5
i3 i2 −i1 −1 i7 −i6 i5 i4

i4 −i5 −i6 −i7 1 i1 i2 i3

i5 −i4 −i7 i6 −i1 1 i3 −i2
i6 i7 −i4 −i5 −i2 −i3 1 i1

i7 −i6 i5 −i4 −i3 i2 −i1 1

Table 2. Multiplication rules for hyperbolic octonions units.

Definition 4. Let O be the conjugate of hyperbolic octonion O. Then the norm is defined
as

N(O) =
√
OO.

Definition 5. The hyperbolic generalized k-Horadam octonion {OWk,n}n≥0 is defined
by

OWk,n = Hk,n +Hk,n+1i1 + · · ·+Hk,n+7i7

= 〈Hk,n, Hk,n+1, . . . , Hk,n+7〉 ,

where Hk,nis the nth generalized k-Horadam numbers.

Definition 6. The conjugate of hyperbolic generalized k-Horadam octonion i.e. OWk,n

is defined by

OWk,n = Hk,n −Hk,n+1i1 − · · · −Hk,n+7i7

= 〈Hk,n,−Hk,n+1, . . . ,−Hk,n+7〉 .

Theorem 8. For n ≥ 0, the following recurrences are verified.

1. OWk,n+2 = φ(k)OWk,n+1 + ψ(k)OWk,n,

2. OWk,n+2 = φ(k)OWk,n+1 + ψ(k)OWk,n.

Theorem 9. Let ψ(k) 6= 0, then in negative indices n, the hyperbolic generalized k-
Horadam octonions are given by

1. OWk,−n = 1
ψ(k)

(OWk,−n+2 − φ(k)OWk,−n+1),

2. OWk,−n = 1
ψ(k)

(OWk,−n+2 − φ(k)OWk,−n+1).

Let R(OWk,n) and V (OWk,n) represent the real and vector parts, respectively, of

OWk,n and they are defined as follows:

R(OWk,n) = Hk,n,

V (OWk,n) = 〈Hk,n+1, Hk,n+2, Hk,n+3, . . . ,Hk,n+7〉 .
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Thus,

OWk,n = R(OWk,n) + V (OWk,n).

Similarly, OWk,n = R(OWk,n)− V (OWk,n).

Theorem 10. The following equations are provided.

1. OWk,n +OWk,n = 2R(OWk,n) = 2Hk,n,

2. OWk,n −OWk,n = 2V (OWk,n).

Now we give Binet like formula and establish some results for the hyperbolic gener-
alized k-Horadam octonions. For rest of the paper, the following symbols has been
defined

α =
7∑
r=0

αrir, α∗ = 1−
7∑
r=1

αrir, β =
7∑
r=0

βrir, and β
∗

= 1−
7∑
r=1

βrir.

Theorem 11. The Binet’s formulas for hyperbolic octonions OWn and OWk,n are given
by

OWk,n =
Pαnα−Qβnβ

α− β
and OWk,n =

Pαnα∗ −Qβnβ∗

α− β
.

Proof. From Definition 5 and relation (3), we have

OWk,n =

7∑
r=0

Hk,n+rir =

7∑
r=0

Pαn+r −Qβn+r

α− β
ir

=
1

α− β

( 7∑
r=0

Pαn+rir −
7∑
r=0

Qβn+rir
)

=
1

α− β

(
Pαn

7∑
r=0

αrir −Qβn
7∑
r=0

βrir
)

=
1

α− β

(
Pαnα−Qβnβ

)
.

The proofs of second part is similar to first part by using the Definition 6.

Lemma 2. The following identities are verified:

1. Pα−Qβ = (α− β)OWk,0,

2. Pα∗ −Qβ∗ = (α− β)OWk,0,

3. α+ α∗ = β + β
∗

= 2.
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Theorem 12 (Finite sum formula). For φ(k) + ψ(k) 6= 1, we have

n∑
r=0

OWk,r =
OWk,1 + (1− φ(k))OWk,0 − ψ(k)OWk,n −OWk,n+1

1− φ(k)− ψ(k)
.

Proof. From Theorem 11, we have

n∑
r=0

OWk,r =

n∑
r=0

(
Pαrα−Qβrβ

α− β

)

=
Pα

α− β

n∑
r=0

αr −
Qβ

α− β

n∑
r=0

βr

(6)

=
Pα(1− β − αn+1 + βαn+1)−Qβ(1− α− βn+1 + αβn+1)

(α− β)(1− (α+ β) + αβ)

=
(Pα−Qβ)− αβ(Pαα−1 −Qββ−1)− (Pααn+1 −Qββn+1) + αβ(Pααn −Qββn)

(α− β)(1− φ(k)− ψ(k))

=
OWk,0 + ψ(k)OWk,−1 −OWk,n+1 − ψ(k)QWk,n

1− φ(k)− ψ(k)
.

Thus, by virtue of Theorems 8 and 9, we have

n∑
r=0

OWk,r =
OWk,1 + (1− φ(k))OWk,0 − ψ(k)OWk,n −OWk,n+1

1− φ(k)− ψ(k)
.

Theorem 13. For hyperbolic generalized k-Horadam octonions, the generating function
is given by

∞∑
n=0

OWk,nt
n =

OWk,0 + (OWk,1 − φ(k)OWk,0)t

1− φ(k)t− ψ(k)t2
.

Proof. Consider the ordinary generating function f(t) =
∑∞

n=0OWk,nt
n i.e.

f(t) = OWk,0 +OWk,1t+OWk,2t
2 +OWk,3t

3 + . . . .

In order to obtain the generating function, we need to calculate
∑∞

n=0OWk,n+2t
n+2

and
∑∞

n=0OWk,n+1t
n+2 that are given as

∞∑
n=0

OWk,n+2t
n+2 = f(t)−OWk,0 −OWk,1t and

∞∑
n=0

OWk,n+1t
n+2 = t(f(t)−OWk,0).
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On performing necessary mathematical operations with Theorem 8(1), we get the
following.

f(t)−OWk,0 −OWk,1t− φ(k)t(f(t)−OWk,0)− ψ(k)t2f(t) = 0

f(t)(1− φ(k)t− ψ(k)t2) = OWk,0 +OWk,1t− φ(k)tOWk,0.

Thus, we have

f(t) =
OWk,0 + (OWk,1 − φ(k)OWk,0)t

1− φ(k)t− ψ(k)t2
,

as required.

Theorem 14. For hyperbolic generalized k-Horadam octonions, the exponential generat-
ing function is given by

∞∑
n=0

OWk,n
tn

n!
=
Pαeαt −Qβeβt

α− β
.

Proof. It can be easily proved using Theorem 11.

Theorem 15. For hyperbolic generalized k-Horadam octonions, the norm is given by

N(OWk,n) =

√
(1− α8)P 2α2n

(α− β)2
α̂+

(1− β8)Q2β2n

(α− β)2
β̂ +

2PQ(ψ(k)4 − 1)(−ψ(k))n

(α− β)2
ĝ,

where α̂ =
∑3
r=0 α

2r, β̂ =
∑3
r=0 β

2r and ĝ =
∑3
r=0(−ψ(k))r.

Proof. From Definition 4 and Theorem 11, we have

N2(OWk,n) = H2
k,n +H2

k,n+1 +H2
k,n+2 +H2

k,n+3 −H
2
k,n+4 −H

2
k,n+5 −H

2
k,n+6 −H

2
k,n+7

=
3∑
r=0

(H2
k,n+r −H

2
k,n+r+4)

=

3∑
r=0

[(Pαn+r −Qβn+r
α− β

)2
−
(Pαn+r+4 −Qβn+r+4

α− β

)2]

=
1

(α− β)2

3∑
r=0

(
P 2α2(n+r) +Q2β2(n+r) − P 2α2(n+r+4) −Q2β2(n+r+4)

+ 2PQ(αβ)n+r((αβ)4 − 1)
)

=
1

(α− β)2

3∑
r=0

(
P 2α2(n+r)(1− α8) +Q2β2(n+r)(1− β8) + 2PQ(−ψ(k))n+r(ψ(k)4 − 1)

)

=
(1− α8)P 2α2n

(α− β)2

3∑
r=0

α2r +
(1− β8)Q2β2n

(α− β)2

3∑
r=0

β2r

+
2PQ(ψ(k)4 − 1)(−ψ(k))n

(α− β)2

3∑
r=0

(−ψ(k))r

=
(1− α8)P 2α2n

(α− β)2
α̂+

(1− β8)Q2β2n

(α− β)2
β̂ +

2PQ(ψ(k)4 − 1)(−ψ(k))n

(α− β)2
ĝ,

where α̂ =
∑3

r=0 α
2r, β̂ =

∑3
r=0 β

2r and ĝ =
∑3

r=0(−ψ(k))r.
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Theorem 16 (Catalan’s Identity). For any integers n and s, we write

OWk,n−sOWk,n+s −OW2
k,n =

PQ(αβ)n−s(αs − βs)(αββs − βααs)
(α− β)2

. (7)

Proof. It can be easily proved using Binet’s formula (Theorem 11) of hyperbolic

octonions OWn.

Substituting s = 1 in the Theorem 16 proves the Cassini’s identity of the hyperbolic

generalized k-Horadam octonions, provided in the next corollary.

Corollary 2. For integer n, we have

OWk,n−1OWk,n+1 −OW2
k,n =

PQ(αβ)n−1(αββ − βαα)

(α− β)
.

Theorem 17. For n, r ∈ Z, the d’Ocagne identity is given as

OWk,rOWk,n+1 −OWk,r+1OWk,n =
PQ(−ψ(k))n

(α− β)

(
αβαr−n − βαβr−n

)
.

Proof. Using Binet formula as given in Theorem 11, we have

OWk,rOWk,n+1 −OWk,r+1OWk,n =
(Pαrα−Qβrβ

α− β

)(Pαn+1α−Qβn+1β

α− β

)
−
(Pαr+1α−Qβr+1β

α− β

)(Pαnα−Qβnβ
α− β

)
=

PQ

(α− β)2

(
αβαrβn(α− β) + βαβrαn(β − α)

)
=

PQ(α− β)

(α− β)2
(αβαrβn − βαβrαn)

=
PQ(−ψ(k))n

(α− β)

(
αβαr−n − βαβr−n

)
.

4. Some Applications of Hyperbolic Generalized k-Horadam
Quaternions and Octonions to Matrices

Now, we obtain the matrix representation of hyperbolic generalized k-Horadam

quaternions and octonions. After that, we give closed form formula for the hy-

perbolic generalized k-Horadam quaternions QWk,n, and hyperbolic generalized k-

Horadam octonions OWk,n, in terms of tridiagonal determinants. Based on papers

[5, 7, 19, 23, 26, 30, 33], we give the following results with a similar approach.
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Theorem 18. Let n ∈ N, then the following equalities hold:

(
QWk,n+3 QWk,n+2

QWk,n+2 QWk,n+1

)
=

(
QWk,3 QWk,2

QWk,2 QWk,1

)(
φ(k) 1

ψ(k) 0

)n
, (8)

(
OWk,n+3 OWk,n+2

OWk,n+2 OWk,n+1

)
=

(
OWk,3 OWk,2

OWk,2 OWk,1

)(
φ(k) 1

ψ(k) 0

)n
. (9)

Proof. We prove it by induction on n. Clearly, the equality (8) is true for n = 1.
Now assume that the result is true for n > 1. So, to verify the result is true for n+ 1,
we have

(
QWk,3 QWk,2

QWk,2 QWk,1

)(
φ(k) 1

ψ(k) 0

)n+1

=

(
QWk,3 QWk,2

QWk,2 QWk,1

)(
φ(k) 1

ψ(k) 0

)n(
φ(k) 1

ψ(k) 0

)

=

(
QWk,n+3 QWk,n+2

QWk,n+2 QWk,n+1

)(
φ(k) 1

ψ(k) 0

)

=

(
QWk,n+4 QWk,n+3

QWk,n+3 QWk,n+2

)
.

So the proof is completed. The assertion (9) can be proved similarly.

Now we give different versions of Cassini identity for hyperbolic generalized k-

Horadam quaternions and hyperbolic generalized k-Horadam octonions.

Corollary 3. For n ∈ N, we have

QWk,n+1QWk,n−1 −
(
QWk,n

)2
= (−ψ(k))n−2

(
QWk,3QWk,1 −

(
QWk,2

)2)
,

QWk,n−1QWk,n+1 −
(
QWk,n

)2
= (−ψ(k))n−2

(
QWk,1QWk,3 −

(
QWk,2

)2)
,

OWk,n+1OWk,n−1 −
(
OWk,n

)2
= (−ψ(k))n−2

(
OWk,3OWk,1 −

(
OWk,2

)2)
,

OWk,n−1OWk,n+1 −
(
OWk,n

)2
= (−ψ(k))n−2

(
OWk,1OWk,3 −

(
OWk,2

)2)
.

Proof. The first claim of the Theorem can be achieved by taking the determinant on

the both sides of Eqn. (8). Other assertions of the theorem are obtained similarly.

The nth term of hyperbolic k-Horadam quaternions can be obtained via the compu-

tation of the determinant of the tridiagonal matrix MQWk,n−1.
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The hyperbolic k-Horadam quaternions are expressed via the determinant of the fol-
lowing matrix:

MQWk,n =



QWk,2 QWk,1

−ψ(k) φ(k) 1

−ψ(k) φ(k) 1

. . .
. . .

. . .

−ψ(k) φ(k) 1

−ψ(k) φ(k)


, (10)

satisfy

|MQWk,n| = QWk,n+1.

Moreover, the hyperbolic k-Horadam octonions are expressed via the determinant of
the following matrix:

MOWk,n =



OWk,2 OWk,1

−ψ(k) φ(k) 1

−ψ(k) φ(k) 1

. . .
. . .

. . .

−ψ(k) φ(k) 1

−ψ(k) φ(k)


, (11)

satisfy

|MOWk,n| = OWk,n+1.

Note that one of the special cases of the generalized k-Horadam polynomials is Cheby-

shev polynomial of the second kind which satisfy the following relation:

Un+1(x) = 2xUn(x)− Un−1(x), n ≥ 0 with U−1(x) = 0, U1(x) = 1.

Now we examine the matrix MQWk,n. We can present the hyperbolic generalized
k-Horadam quaternions, by means of the Chebyshev polynomials of the second kind,
given as

QWk,n+1 =
(
−i
√
ψ(k)

)n−1
(
Un−1

(
φ(k)

2
√
ψ(k)

)
QWk,2 + i

√
ψ(k)Un−2

(
φ(k)

2
√
ψ(k)

)
QWk,1

)
,

(12)

where

QWk,1 = be1 + (aψ(k) + bφ(k)) e2 +
(
aφ(k)ψ(k) + b

[
φ2(k) + ψ(k)

])
e3

+
(
a
[
φ2(k)ψ(k) + ψ(k)

]
+ b

[
φ3(k) + 2φ(k)ψ(k)

])
e4,

and

QWk,2 = (aψ(k) + bφ(k)) e1 +
(
aφ(k)ψ(k) + b

[
φ2(k) + ψ(k)

])
e2

+
(
a
[
φ2(k)ψ(k) + ψ(k)

]
+ b

[
φ3(k) + 2φ(k)ψ(k)

])
e3

+
(
aφ(k)ψ(k)

[
φ2(k) + 2ψ(k)

]
+ b

[
φ4(k) + 3φ2(k)ψ(k) + ψ2(k)

])
e4.
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As an illustrative example, substituting n = 10, a = 0, b = φ(k) = ψ(k) = 1, in Eqn.

(12), we have the hyperbolic Fibonacci quaternion QFk,11. Namely,

QFk,11 = (−i)
(
U9

(
1

2

)
QFk,2 + iU8

(
1

2

)
QFk,1

)
,

where

QFk,1 = e1 + e2 + +2e3 + 3e4 and QFk,2 = e1 + 2e2 + 3e3 + 5e4.

5. Conclusion

In summary, we have examined the hyperbolic generalized k-Horadam quaternions

and hyperbolic k-Horadam octonions. We have obtained some new properties and

identities of these types of hypercomplex numbers. By the use of tridiagonal matrix,

we have achieved formula for the nth element of hyperbolic generalized k-Horadam

quaternions and hyperbolic k-Horadam octonions. Moreover, the determinants of

the tridiagonal matrix has been obtained through the Chebyshev polynomials of the

second kind. For particular cases of a, b, φ(k), and ψ(k), all results are applicable

to hyperbolic quaternions and octonions whose components are special polynomials

and numbers defined by a second-order recurrence relation.
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