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1. Introduction

Special number sequences are of great interests in research due to their wide uses in
other branches like geometry, combinatorics, approximation theory, statistics, cryp-
tography, physics, etc. Especially many numbers defined with the help of second-order
recurrence relations have been widely investigated by mathematicians in recent years.
One of such interesting sequence is Horadam sequence [13] which generalizes many
second order recurrences. In recent years, several works have been done on Horadam

* Corresponding Author

© 2024 Azarbaijan Shahid Madani University



708 Hyperbolic Generalized k-Horadam Quaternions and Octonions

numbers. For example, Frontczak [8] studied the Horadam identities via binomial co-
efficients and gave many other known identities. G.Y. Sentiirk et al. [28] obtained the
fundamental and algebraic properties of Horadam numbers and gave special matrix
representations of them. Horzum and Kocer [15] studied the polynomials associated
with Horadam numbers. T.D. Sentiirk et. al. [29] presented study on the Horadam
hybrid numbers. C. Kizilateg [18] studied the Horadam hybrinomials. Yazlik, et al.
[32] investigated the k-Horadam sequence in more generalized way. Prasad, et al. [27]
extended the k-Horadam numbers to third order and studied their properties. It is
worthful to start with the definition of the Horadam numbers in generalized form.

Definition 1. ([32]) Let ¢(k) and (k) be scalar valued polynomials and k € R*. Then
the k-Horadam sequence {Hy ,} in generalized form is defined by

Hinto = ¢(k)Hint1 + Y(k)Him, n>0, where Hyo=a, Heg1 =b. (1)

Note that a = (¢(k) + \/¢?(k) + 49 (k) ) /2 and B = (d(k) — /#2(k) + 4 (k) ) /2 are
two roots of the characteristic equation 22 — ¢(k)z — (k) = 0 corresponding to Eqn.
(1). Thus, they satisfy the following properties:

a+ﬁ:¢<k)7 a—pf= v¢2(k)+41/}(k)7 Oz,@:—’lb(ki),
o’ + 52 = ¢ (k) +20(k) and o’ + 8% = ¢ (k) + 3(k) (k). (2)

The sequence defined by (1) is usually denoted by Hy ,(a,b; ¢,1) and for simplicity
we use Hy , if it does not cause ambiguity. We have listed some of the well-known
k-Horadam numbers in the following table for particular values of a,b and ¢, .

Name of Sequences lCoefﬁcient (qb,d;)[ Initial values (a, b)
Horadam sequence (p,q) a,b
k-Fibonacci / k-Lucas sequence (k, 1) a=0,b=1/a=2b=1
Fibonacci / Lucas sequence (1,1) a=0,b=1/a=2,b=1
k-Jacobsthal / k-Jacobsthal-Lucas sequence (k,2) a=0,b=1/a=2b=k
k-Pell / k-Pell-Lucas sequence (2,k) a=0,b=1 /a=b=2
k-Mersenne / k-Mersenne-Lucas sequence (3k,—2) a=0,b=1/a=2,b=3k
k-balancing / k-Lucas-balancing sequence (6k,—1) a=0,b=1/a=1,b=3

Table 1. List of some integer sequences Hy p.

In [27, 32], the authors have studied the generalized k-Horadam sequence {Hj, ,, } and
presented some interesting properties of them. The closed form formula for sequence
(1) is given by

PB"™ — Qa”

Hypn=——7— and Hy_,= (*Unmv

n €N, (3)

where P =b—af and Q = b — aa.
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Before proceeding, it is worth noting some information on the progress of quaternion
and octonion. These hyper-complex numbers have wide application in various areas
like string theory, quantum physics, computer sciences, differential geometry, etc.
The concept of quaternions (H) was introduced in 1843 by W.R Hamilton [12], which
is an associative and non-commutative 4-dimensional algebra over R. Later in 1963,
Horadam [14] introduced the Fibonacci quaternions (Q,,) and Lucas quaternions (R, )
using the Fibonacci numbers F,, and Lucas numbers L, , respectively, which are
defined as

3 3
Qn = Z Foyres and R, = Z Loyres.
r=0 r=0

Motivated by Hamilton’s work, in 1843 J. Graves introduced the set of octonions
(0) which is a non-associative and non-commutative 8-dimensional algebra over R.
Many works on octonions with a number sequence have been done. For example, the
Fibonacci and Lucas octonions were studied by Kegilioglu et al. [16] as

7 7
Qn = Z Fn+res and Tn = Z Ln+res-
r=0 r=0

For some recent works on variants of Fibonacci like quaternions, octonions and their
applications, see [1, 2, 6, 11, 17, 20-22, 25, 31].

Nowadays, research works are going on in more generalizations such as hyperbolic
quaternions, octonions, etc. involving a special Horadam number sequence. Some re-
cent works on the hyperbolic quaternions and octonions with known number sequences
are due to A. Godase for hyperbolic k-Fibonacci and k-Fibonacci Lucas octonions [9]
(and quaternions [10]), Ozkan et al. [24] for hyperbolic k-Jacobsthal and k-Jacobsthal
Lucas quaternions, etc.

In the light of the above papers, here, we define and study the hyperbolic generalized
k-Horadam quaternions and octonions, respectively. Then we obtain some properties
of these newly established hyper-complex numbers. Finally, we present matrix repre-
sentations of these hyper-complex numbers and some nice determinant computations.

2. Hyperbolic Generalized k-Horadam Quaternions

In this section, we introduce the hyperbolic generalized k-Horadam quaternions and
study their some algebraic properties. First we establish the Binet formula and then

give some combinatorial identities of this sequence.
A hyperbolic quaternion Q is an expression of the form

Q= Q1 + Qoe1 + Qzez + Qqez = ( Q1,Q2, 923, Q4),

where Q1, Qs, Q3, Q4 are real components and eg, e1, €2, e3 are hyperbolic quaternion
units. The bases of hyperbolic quaternions is By = {eg = 1, e1,€2,e3}, where e is
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identity satisfy the non-commutative multiplication rule, defined as:

eg = 1,6% = e% = e% =1l,e1eze3 =1,

€1€2 = €3 = —e€2€1, €263 = €1 — —€3€2, €3€] = €2 = —€1€3.

Here, Q1 is the real part of Q and 23:1 Qr+1€, is vector part of Q and it is denoted
by R(Q) and V(Q), respectively. Thus, Q@ = R(Q) + V(Q).

Definition 2. The hyperbolic generalized k-Horadam quaternions {OQWy ,, }n>0 are de-
fined as

Wik n = Hgpn+ Hgnyie1 + Hgpioe2 + Hy nyzes
(Hin, Hent1s He o2, Hi s ) -

Here, R(QWk,n) = Hy,n, and V(QWy 1) = (Hint1, Hiynt2, Hint3)-
The hyperbolic generalized k-Horadam quaternions QW;, ,, can be also extended to
negative indices n and they are given as

OWi —n=Hp _n+Hp _ni1e1+ Hg, _nysea+ Hg, _py3es.

Definition 3. The conjugate of hyperbolic generalized k-Horadam quaternions QW , is
defined as

OWin = Higp— Hpnyi1e1 — Hyg pioe2 — Hg nyzes

<Hk,n7 7Hk,n+17 7Hk,n+2: 7Hk,n+3> .
Here, R(OWy ) = Hy p, and V(OWy ) = (—Himt1, —Hint2, —Hints)-

Theorem 1. The hyperbolic generalized k-Horadam quaternions and their conjugates are
related as

ka,n + QWk,n = 2Hk,n~

The norm of OWy, ,, is given as

N(ka»n) = ka,nQWk,n = \/Hg,n - HI%,n—O—l - Hz,n+2 - H.g,n+3‘
In this section, we define the following notations:
& =1+ ael +a?es + ades and B: 1+661+6262+6363.

Now we give the following useful lemma for proofs of theorems.
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Lemma 1. For a and B, the following identities are provided.

1. &B = 2(1 + Ber + B?e2) + (a® + B* + a — B)es.

2. Ba = 2(1 + ae; + a’e2) + (a® + B2 — a + B)es.

3. &+ B =2+ ¢(k)er + (¢° (k) + 20(k))ez + (¢° (k) + 3p(k)vo(k))es.
4. &B — Ba = 2¢(k)(—e1 — ¢(k)ea + es).

5. aB + Ba = 2(é +B).

Proof. The identities can be can easily proved by definition of & and B using relation
(2). O

Theorem 2. The Binet formula for hyperbolic generalized k-Horadam quaternions QW,,
is given by
Pa™& — n 3
oW, = LaraZ QBT
a—f

Proof. From (3), we have

3 Pan+r _ QBn-H‘

M = 2. =g
r=0

1 ¢ + - +

= a_ﬁ(;Pa er—gQﬁ er)
1 3 3

= (Pa" Z a"e, —QB" Z ,BTeT)
- ’8 r=0 r=0
1 n~ na

- OHﬁ(lDa &—QB 5),

Thus, this completes the proof. O

Theorem 3. For hyperbolic generalized k-Horadam quaternions QWj, ,,, the generating
function is given by
QWi 0 + (QWi1 — ¢(k) QWi 0)t

c) = 1= k)t — p(h)2

Proof.  Let G(t) = Y07 ) QWy »,t™ be an ordinary generating function for QWj, ,,.
Namely,
G(t) = QWi,0 + QWi 1t + OWy ot? + QW 5t +

Then using Binet formula for hyperbolic generalized k-Horadam quaternions, we ob-
tain
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Pa Z Q" — QﬁZﬁnt")

n=0

Pa
at

P& — QB — t(Pap — Qﬁa)>

(1—at)(1—pBt)

(P& — QB) + t(( Paa—Q,BB) (a +B)(Poc—Qﬂ))
— (a+ B)t + apt?

-8
1

5!
5(1 -5
—5(
(

-8

Thus using Theorem 2, we have

QW0 + (QWp1 — d(k) QWi o)t

c) = 1 k)t — p(h)2

O

Theorem 4. For hyperbolic generalized k-Horadam quaternions, the erponential gener-

ating function is given by

> tn Pae®t — QpePt
W p— = ———.
,;0 Bl T 62 (k) + 4y (k)

Proof. Using Theorem 2, the result can be easily proved.
Theorem 5. Forn,s € Z, we have

OWin e QWi pe — 02 = PREW(E)" 5(

— B°)(GBB° — pac®)

¢? (k) + 49 (k)

Proof. Using Theorem 2 in the LHS, we have

QWk,nfs ka,n+5 - Qwi,n =

a—f B

Pan—*G — QF"~*B (Pa"t*a — QF"T*fy (Pad— Qp"
(= ) )

a—p

(4)

).
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By using (2) and after some calculations, we find that

(aliQB)2 (-anepnteaf — g ot fa + a5 GB + Ao Ba)

“Tamap [0 5) r5 (5]

_ PR@A)" _BS)(&B B&>

ka,n—s ka,n+s - sz,n =

(a—p)2 as
_ PQ(ap)"(a® — %) (dﬁﬁs - Bda3>
(a - ) o
_ PQ=¢(k))"*(a® — §°)(Fp° — faa*)
2 (k) + 4 (k)

O

Setting s = 1 in Theorem 5 gives the following identity for hyperbolic generalized
k-Horadam quaternion which is known as the Cassini’s identity.

Corollary 1.

PQ(=¢ (k)" (B&B — afa)

Wiono1OWh i1 — QW =
Wk n—1QWgnt1 — QWi 2 T a0

(5)

Theorem 6. Forn,r € Z, we have

PQ(=¢ (k)"

Wi rOWg ne1 — QWi Win = —————
OWg r QWi nt1 — QWi r 1 QW 2 T a0

(aBof*" - B&ﬁ“”).
Proof. By virtue of Theorem 2, we get

(Pof& - Qﬁ%) (Pa"“d - Qﬁ”“ﬁ)

QWk,'r QWk,n+1 - QWk,r+1 QWk,n =

a—p a—f
_(Parta — QBTN Pama — QB
( a—f ) ( a—pB )
On simplification and using (2), it gives
OWir QWi s = OWir 1 Wi = — (fa"8" (0~ §) + B a™ (8 - )
(a—8)
PQ(O&—ﬂ) ~ 2T AN 25T M
= W(aﬁa B" — Bap"a™)
PQ(=¢ (k)"
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Theorem 7 (Finite sum formula). For ¢(k) + ¢(k) # 1, we have

- AW 1+ (1 — ¢(k) QWi o — Y(k) QWi n — QWi 1
Wiy = b : : ntl
2, M 1= (k) — (k)

Proof. From Theorem 2, we write L.H.S. as

" Pa"da— QB"A Pa N, QB .
> (T ):a—ﬁz‘*‘a—ﬁ;ﬁ

r=0 r=0

P& a™tl -1 QB 1-prt!
a—pf a-1 _a—ﬂ 1-7
_ 1 (Pda"+1—Pd_QE—QE’ﬂ"+1)

a—pf a—1 1-p
_ 1 (Pdan+16 — PaB — Paa™t! + Pa
a-8 (a=1)(B-1)
_ QBB la — Qfa — QBB + QB).
(a=1)(B-1)

Since (@ —1)(8 — 1) =1 — ¢(k) — ¢(k), thus using Theorem 2, we get

& QWi 1 + (1 — ¢(k)QWy o — (k) QWi n — QWi 11
Wi,y = b : : mtl,
2 M, 1= o(k) — p()

3. Hyperbolic Generalized k-Horadam Octonions

Now, we introduce the hyperbolic generalized k-Horadam octonions and study their
properties. We establish the Binet formula and then we present some well-known
identities of them.

Cariow, et al. [3, 4] defined the concept of hyperbolic octonion O, which is expressed
as

O = ho+ hyiy + hoia + haiz + hgig + hsis + heie + hriz
= < hg, ha, ha, hs, ha, hs, he, by >

where hg, h1, ha, hs, hy, hs, hg, h7 are the real components and ¢, i3, 73 are quaternion
imaginary units, i4(i42 = 1) is a counter imaginary unit. For hyperbolic octonions,
bases are defined as follows:

iy L9 9 .9 .9
1104 = 15, G204 = lg, 1304 = U7, 14~ = 15" =ig" =47 = 1.

The multiplication rules for the bases of hyperbolic octonions O as mentioned in [3, 4]
are given in the Table 2.
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.Hi1‘i2‘i3‘i4‘i5‘i6‘i7

i1|| —1]| 23 |—%2| i5 | %4 |—i7]| U6

ioll—is| —1| 41 | i | 47 | 44 |—i5

il 42 |—d1| —1| i7 |—ig| 45 | ia

iq||—15|—te|—27| 1 | 21 | 42 | 13

i5 || —ta|—t7| t6 |—t1| 1 | @3 |—i2

ig|| t7 |—ta|—t5|—t2|—t3| 1 | 71

i7||—t6| U5 |—%a|—t3| t2 |—t1| 1

Table 2. Multiplication rules for hyperbolic octonions units.

Definition 4. Let O be the conjugate of hyperbolic octonion . Then the norm is defined
as

Definition 5. The hyperbolic generalized k-Horadam octonion {OWy, »}rn>0 is defined
by

OWkn = Hgpn + Hint101 + -+ + Hi ngrir
- <Hk,n, Hk,n+1, ey Hk,n+7> 5

where Hj, »is the nth generalized k-Horadam numbers.

Definition 6. The conjugate of hyperbolic generalized k-Horadam octonion i.e. OWy, ,,
is defined by

OWikin = Hpn — Hing1t1 — -+ — Hi ngrin
= <Hk7n7 _Hk,TH-lv B} _Hk,n+7> .
Theorem 8. Forn >0, the following recurrences are verified.
1. OWpgny2 = ¢(k)OWi ny1 + (k) OWi i,
2. OWk7n+2 B (]5(]{5)0Wk,n+1 + w(k)Okan.

Theorem 9.  Let (k) # 0, then in negative indices n, the hyperbolic generalized k-
Horadam octonions are given by

1. OWk,fn - (1k) ((/)Wk,fn+2 — ¢(k})OWk77»ﬂ+1),

:

2. OWy,n = b5 (OWi _ni2 — $(K)OWy, _n1).

<

Let R(OWyg,,) and V(OWy,,) represent the real and vector parts, respectively, of
OWj,., and they are defined as follows:

R(OWkﬁn) = Hk,na
V<0Wk,n) = <Hk,n+17 Hk,n+2a Hk7n+37 e 7Hk:,n+7> .
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Thus,
OW}cﬁn = R(OWM) + V(OWk’n)

Similarly, OWin = R(OWp ) = V(OWi ).

Theorem 10. The following equations are provided.
1. OWpn + OWy, = 2R(OWh,n) = 2Hp i,
2. OWin — OWpn = 2V(OWy ).

Now we give Binet like formula and establish some results for the hyperbolic gener-
alized k-Horadam octonions. For rest of the paper, the following symbols has been
defined

Theorem 11. The Binet’s formulas for hyperbolic octonions OW,, and OWy. ,, are given
by
- n Pa™a* — n3*
OWpp = 2750 P ond OWy,,p, = M—g'gﬂ
o —

Proof.  From Definition 5 and relation (3), we have

7 7
. Pantr — QBT
OWin = 3 Himirir = 3 L =08,
r=0 r=0 o B

= (X et S5

r=0 r=0

= (pPa S ot - QY 87ir)
o= B r=0 r=0
S 5 (Pa"a - Qp"B).

o —

The proofs of second part is similar to first part by using the Definition 6. O

Lemma 2. The following identities are verified:
1. Pa — QB = (Oc — 5)0Wk,(),
2. Pa* — QB = (a— B)OWh.o,

S.a+a*=B+48 =2
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Theorem 12 (Finite sum formula). For ¢(k) + ¢ (k) # 1, we have

- OWpi1 + (1= o(k))OWg 0 — h(k)OWg ., — OWp g1
oWy, = ’ : ; il
Eo s 1— (k) — (k)

Proof. From Theorem 11, we have

n " [ Pa"a—QB"B
OWpg = _
Som. - £ (*=87)

(6)

_ Pa(l—B—al 4 Banth) — QB(1 — a— gt + apntl)
B (a=B)(1—(a+B)+ap)
(Pa—QB) —af(Paa™! —QBB™!) — (Paa™t! — QBB"T) 4+ af(Paa™ — QBB™)
(a=B)(1 = ¢(k) —p(k))
OWr0 +Y(E)OWgr 1 — OWg nyp1 — (k) QWi
1 — (k) — (k) '

Thus, by virtue of Theorems 8 and 9, we have

~ OWpi1+ (1 — o(k))OWy 0 — P(K)OWy, , — OWy i1
OWy, = : : ’ e
Z% w 1— ¢(k) — v(k)

O

Theorem 13. For hyperbolic generalized k-Horadam octonions, the generating function
is given by

> n_ OWg o+ (OWg 1 — ¢(k)OWy o)t
T;OOW’““ = 1= p(k)t — w(k)E2 '

Proof.  Consider the ordinary generating function f(t) = > 7  OWj, t™ i.c.
F(t) = OWg o+ OWp 1t + OWp ot? + OWy 5> + ...

In order to obtain the generating function, we need to calculate ZZO:() OWp, pyat™ 2
and Y02 OWj, i1t that are given as

D> OWkngat"™ = f(t) = OWg 0 — OWg it and > OWy 1 t" T2 = t(f(t) — OWp ).

n=0 n=0
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On performing necessary mathematical operations with Theorem 8(1), we get the
following.

F(t) = OWy g — OWy, 1t — (k)E(f(t) — OWy 0) — $(K)E* f(t) = 0
(1 = d(k)t — Y(k)E?) = OWy g + OWp 1t — $(k)tOW, .
Thus, we have
OWrg,0 + (OWp1 — ¢(k)OWy o)t
1— ¢(k)t — y(k)t? ’
as required. O

ft) =

Theorem 14. For hyperbolic generalized k-Horadam octonions, the exponential generat-
ing function is given by

e} n —_ at _ NHRLPt
Z oW, nL _ Pae QpBe .
"l a—p
Proof. Tt can be easily proved using Theorem 11. O

Theorem 15. For hyperbolic generalized k-Horadam octonions, the morm is given by

— 2 2n _ 38 232n _ _ n
N(OW,.) = \/(1 VN (T R i I [

N 3 A 3 ~ 3
where & =Y a?, B= Do 8% and § = Do (=w(k))".
Proof. From Definition 4 and Theorem 11, we have
N*(OWy ) = Hl%n + H}%,n+1 + ng,n+2 + H}%,n+3 - HI%,n+4 - Hl%,n+5 - Hl%,n+6 - Hl%,n-‘-?

2 2
= Z(Hk,n+r - Hk,n+r+4)
r=0

3

(P gy (e gmy

r=0

_ 1 2 2 n+r 2(n+r 2 2(n+r+4 2 n2(n+r+4
_(a75)22<p (ntm) 4 @2p2(ntr) _ p2,2( ) — Q2B )
r=0

+2PQ(aB)" " ((aB)' — 1))
3
— ﬁ Z (P2a2(n+r)(1 _ a8) + QZ/@Q(?H’T)(]_ _ /38) + 2PQ(—’¢1(1€))”+T(’¢(1€)4 _ 1))

:(170[ P2 27123: o (1*58Q252n262r
r=0

(o= B)2
4 _ _ n 3
- 2P = DT gy
(a—p) 2
_ (1=a®)P%?r o (1-BHQB%" o 2PQ((R)! — D)(=v(k)"
= wopE T a7 (a— B2 !

where & = Zi:o Q% B = Zi:o B%" and g = Zi:o(—w(k))r~ O
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Theorem 16 (Catalan’s Identity). For any integers n and s, we write

Owk,n—sowk,n+s _ Owi,n _ PQ(a,@)nis(a;a—iﬂ;))QEEﬂs - Baas) . (7)

Proof. Tt can be easily proved using Binet’s formula (Theorem 11) of hyperbolic
octonions OW,,. O

Substituting s = 1 in the Theorem 16 proves the Cassini’s identity of the hyperbolic
generalized k-Horadam octonions, provided in the next corollary.

Corollary 2. For integer n, we have

P n—1(=R3R _ A=
Wi 1 OWimss — OWE, = PAL) - (_ag)ﬁ faia)

Theorem 17. For n,r € Z, the d’Ocagne identity is given as
P - " A r—n A—=pr—m
OWi OWinss —~ OWi 1 OWy o = LRV (gron_ grny

Proof. Using Binet formula as given in Theorem 11, we have

Pa"a — r P n+l= _ n+173
Owk,rowk,n+1 - OWk,r+10Wk,n = ( QB 6)( 2 < Qﬂ B)

a—p a—pf
B (Pa”’la — Qﬁ’"‘HB) <Pa”a - Q,B”B)
a—f a—p
= %(&Barﬁ" ~ Bagran)
PQ(—y(k)™ /_— . - .
— Q((a i/}/(B))) (aﬂa77n _ 5&6777L)'

O

4. Some Applications of Hyperbolic Generalized k-Horadam
Quaternions and Octonions to Matrices

Now, we obtain the matrix representation of hyperbolic generalized k-Horadam
quaternions and octonions. After that, we give closed form formula for the hy-
perbolic generalized k-Horadam quaternions QW ,,, and hyperbolic generalized k-
Horadam octonions OWj, ., in terms of tridiagonal determinants. Based on papers
[5, 7, 19, 23, 26, 30, 33|, we give the following results with a similar approach.
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Theorem 18. Let n € N, then the following equalities hold:

QWints QWVent2 | _ [ QWVi3z QWi (k) 1 ! (8)
Wk 2 QWi i1 OWg2 QWi (k) 0 )’

OWings OWingo | _ [ OWg3 OWy o (k) 1 . )
OWing2 OWg i1 OWpg o OWyg 1 ¥(k) 0

Proof. We prove it by induction on n. Clearly, the equality (8) is true for n = 1.
Now assume that the result is true for n > 1. So, to verify the result is true for n+1,
we have

QWi 3 QWi o (k) 1 nH: OWi3 QWi o 1 o(k) 1
QWi o QWi (k) 0 QWy2 QWi w(k 0 Wf) 0
_ ( Wi nt+3 QWi nt2 ) <¢ >
Wi nt2 QWi nt1 Pk

_ [ DVents QVin+s )
QWk,n+3 QWk:,n+2

So the proof is completed. The assertion (9) can be proved similarly. O

Now we give different versions of Cassini identity for hyperbolic generalized k-
Horadam quaternions and hyperbolic generalized k-Horadam octonions.

Corollary 3. Forn € N, we have

Wi n+19QWhn—1 — (ka,n)2 = (—(k)"? (ka,3QWk,1 - (QWk,z)Q) ;

QWien 1 Q@Win1 = (QWkn)® = (—6(k)" "2 (QWk1QWi s — (QWi2)%) |
OWkns10Wi o1 = (OWi)® = (=)™~ (OWy 30Wp1 — (OWr,2)*)

OWpin—1OWpg ny1 — (Owk,n)2 = (—p(k)" 2 (OWk,1OWk,3 - (OWk,z)Q) .
Proof. The first claim of the Theorem can be achieved by taking the determinant on
the both sides of Eqn. (8). Other assertions of the theorem are obtained similarly. O

The nth term of hyperbolic k-Horadam quaternions can be obtained via the compu-
tation of the determinant of the tridiagonal matrix M OWy, 1.
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The hyperbolic k-Horadam quaternions are expressed via the determinant of the fol-
lowing matrix:

QW2 QWi 1
—(k)  ¢(k) 1
—p(k) o(k) 1
—p(k) o(k) 1
—p(k) ¢(k)

satisfy
|MOWy, | = QWi g1

Moreover, the hyperbolic k-Horadam octonions are expressed via the determinant of
the following matrix:

OWpgo OWg 1
—¢(k)  ok) 1
—¢(k) (k) 1
MOW;, , = ) ) ; (11)
—¢(k) o(k) 1
—¢(k) o(k)

satisfy
[MOWg.| = OWp g1

Note that one of the special cases of the generalized k-Horadam polynomials is Cheby-
shev polynomial of the second kind which satisfy the following relation:

Upii1(x) = 22U (z) = Up—1(z), n >0 with U_q(z) =0,U;(x) = 1.

Now we examine the matrix M QW ,. We can present the hyperbolic generalized
k-Horadam quaternions, by means of the Chebyshev polynomials of the second kind,
given as

. n—1 B(k) . ¢(k)
Wk nt1 = (—sz(k)) <Unl (2 T/J(k)> QWi 2 + i/ Y(k)Un—2 (%/M) QWk,1> )
(12)

where

QWi 1 = ber + (ao(k) + bo(k)) e2 + (ag(k)p(k) + b [¢ (k) + (K)]) es
+ (a [¢* (k)Y (k) + (k)] + b [¢° (k) + 26(k)1p(k)]) ea,

and
QW 2 = (ayp(k) + bd(k)) e1 + (ap(k)v (k) + b [¢* (k) + ¥ (k)]) ez

+ (a [@?(k)p(k) + (k)] + b [6° (k) + 26(k)v(k)]) es
+ (ap(k)p(k) [¢° (k) + 2 (k)] + b [¢* (k) + 3¢ (k) (k) + 2 (k)]) ea.
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As an illustrative example, substituting n = 10, a =0, b = ¢(k) = ¥ (k) = 1, in Eqn.
(12), we have the hyperbolic Fibonacci quaternion QF}, 11. Namely,

1 1
QF k11 = (1) (Ug (5> QF 2 +1iUs (§> ka,l) ;

where

Q‘/_'.kJ =e1 + ey + +2e3+ 3e4 and Q-Fk,Q = e1 + 2eo + 3e3 + Hey.

5. Conclusion

In summary, we have examined the hyperbolic generalized k-Horadam quaternions
and hyperbolic k-Horadam octonions. We have obtained some new properties and
identities of these types of hypercomplex numbers. By the use of tridiagonal matrix,
we have achieved formula for the nth element of hyperbolic generalized k-Horadam
quaternions and hyperbolic k-Horadam octonions. Moreover, the determinants of
the tridiagonal matrix has been obtained through the Chebyshev polynomials of the
second kind. For particular cases of a, b, ¢(k), and 9 (k), all results are applicable
to hyperbolic quaternions and octonions whose components are special polynomials
and numbers defined by a second-order recurrence relation.
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